skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Three pre-vaccine responses to Covid-like epidemics
This paper contains a theoretical study of epidemic control. It is inspired by current events but not intended to be an accurate depiction of the SARS-CoV-2 pandemic. We consider the emergence of a highly transmissible pathogen, focusing on metropolitan areas. To ensure some degree of realism, we present a conceptual model of the outbreak and early attempts to stave off the onslaught, including the use of lockdowns. Model outputs show strong qualitative—in some respects even quantitative—resemblance to the events of Spring 2020 in many cities worldwide. We then use this model to project forward in time to examine different paths in epidemic control after the initial surge is tamed and before the arrival of vaccines. Three very different control strategies are analyzed, leading to vastly different outcomes in terms of economic recovery and total infected population (or progress toward herd immunity). Our model, which is a version of the SEIQR model, is a time-dependent dynamical system with feedback-control. One of the main conclusions of this analysis is that the course of the epidemic is not entirely dictated by the virus: how the population responds to it can play an equally important role in determining the eventual outcome.  more » « less
Award ID(s):
1901009
PAR ID:
10635828
Author(s) / Creator(s):
;
Editor(s):
Souza, Max O
Publisher / Repository:
Public Library of Science
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
5
ISSN:
1932-6203
Page Range / eLocation ID:
e0251349
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Data on population movements can be helpful in designing targeted policy responses to curb epidemic spread. However, it is not clear how to exactly leverage such data and how valuable they might be for the control of epidemics. To explore these questions, we study a spatial epidemic model that explicitly accounts for population movements and propose an optimization framework for obtaining targeted policies that restrict economic activity in different neighborhoods of a city at different levels. We focus on COVID-19 and calibrate our model using the mobile phone data that capture individuals’ movements within New York City (NYC). We use these data to illustrate that targeting can allow for substantially higher employment levels than uniform (city-wide) policies when applied to reduce infections across a region of focus. In our NYC example (which focuses on the control of the disease in April 2020), our main model illustrates that appropriate targeting achieves a reduction in infections in all neighborhoods while resuming 23.1%–42.4% of the baseline nonteleworkable employment level. By contrast, uniform restriction policies that achieve the same policy goal permit 3.92–6.25 times less nonteleworkable employment. Our optimization framework demonstrates the potential of targeting to limit the economic costs of unemployment while curbing the spread of an epidemic. This paper was accepted by Carri Chan, healthcare management. 
    more » « less
  2. In this letter, we propose an epidemic model over temporal networks that explicitly encapsulates two different control actions. We develop our model within the theoretical framework of activity driven networks (ADNs), which have emerged as a valuable tool to capture the complexity of dynamical processes on networks, coevolving at a comparable time scale to the temporal network formation. Specifically, we complement a susceptible–infected–susceptible epidemic model with features that are typical of nonpharmaceutical interventions in public health policies: i) actions to promote awareness, which induce people to adopt self-protective behaviors, and ii) confinement policies to reduce the social activity of infected individuals. In the thermodynamic limit of large-scale populations, we use a mean-field approach to analytically derive the epidemic threshold, which offers viable insight to devise containment actions at the early stages of the outbreak. Through the proposed model, it is possible to devise an optimal epidemic control policy as the combination of the two strategies, arising from the solution of an optimization problem. Finally, the analytical computation of the epidemic prevalence in endemic diseases on homogeneous ADNs is used to optimally calibrate control actions toward mitigating an endemic disease. Simulations are provided to support our theoretical results. 
    more » « less
  3. In an epidemic network, lags due to travel time between populations, latent period, and recovery period can significantly change the epidemic behavior and result in successive echoing waves of the spread between various population clusters. Moreover, external shocks to a given population can propagate to other populations within the network, potentially snowballing into waves of resurgent epidemics. The main objective of this study is to investigate the effect of time delay and small shocks/uncertainties on the linear susceptible-infectious-susceptible (SIS) dynamics of epidemic networks. In this regard, the asymptotic stability of this class of networks is first studied, and then its performance loss due to small shocks/uncertainties is evaluated based on the notion of the norm. It is shown that network performance loss is correlated with the structure of the underlying graph, intrinsic time delays, epidemic characteristics, and external shocks. This performance measure is then used to develop an optimal traffic restriction algorithm for network performance enhancement, resulting in reduced infection in the metapopulation. A novel epidemic-based centrality index is also defined to evaluate the impact of every subpopulation on network performance, and its asymptotic behavior is investigated. It is shown that for specific choices of parameters, the output of the epidemic-based centrality index converges to the results obtained by local or eigenvector centralities. Moreover, given that epidemic-based centrality depends on the epidemic properties of the disease, it may yield distinct node rankings as the disease characteristics slowly change over time or as different types of infections spread. This node interlacing phenomenon is not observed in other centralities that rely solely on network structure. This unique characteristic of epidemic-based centrality enables it to adjust to various epidemic features. The derived centrality index is then adopted to improve the network robustness against external shocks on the epidemic network. The numerical results, along with the theoretical expectations, highlight the role of time delay as well as small shocks in investigating the most effective methods of epidemic containment. 
    more » « less
  4. null (Ed.)
    An actively controlled Susceptible-Infected-Susceptible (actSIS) contagion model is presented for studying epidemic dynamics with continuous-time feedback control of infection rates. Our work is inspired by the observation that epidemics can be controlled through decentralized disease-control strategies such as quarantining, sheltering in place, social distancing, etc., where individuals can actively modify their contact rates in response to observations of the infection levels in the population. Accounting for a time lag in observations and categorizing individuals into distinct sub-populations based on their risk profiles, we show that the actSIS model manifests qualitatively different features as compared with the SIS model. In a homogeneous population of risk-averters, the endemic equilibrium is always reduced, although the transient infection level can overshoot or undershoot. In a homogeneous population of risk-tolerating individuals, the system exhibits bistability, which can also lead to reduced infection. For a heterogeneous population comprised of risk-tolerators and risk-averters, we prove conditions on model parameters for the existence of a Hopf bifurcation and sustained oscillations in the infected population. 
    more » « less
  5. During an epidemic, it can be difficult to get an estimate of the actual number of people infected at any given time. This is due to multiple reasons, including some cases being asymptomatic and sick people not seeking healthcare for mild symptoms, among others. Large scale random sampling of the population for testing can be expensive, especially in the early stages of an epidemic, when tests are scarce. Here we show how an adaptive prevalence testing method can be developed to obtain a good estimate of the disease burden by learning to intelligently allocate a small number of tests for random testing of the population. Our approach uses a combination of an agent-based simulation and deep learning in an active sensing paradigm. We show that it is possible to get a good state estimate with relatively minimal prevalence testing, and that the trained system adapts quickly and performs well even if the disease parameters change. 
    more » « less