skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seasonal West‐East Seesaw of M2 Internal Tides From the Luzon Strait
Satellite altimetry sea surface height (SSH) measurements from 1993 to 2017 are used to investigate the seasonal variability of mode‐1 M2internal tides from the Luzon Strait. The 25 years of SSH data are divided into four seasonal subsets, from which four seasonal internal tide models are constructed following the same mapping procedure. Climatological seasonal hydrography in the World Ocean Atlas 2013 is used to calculate two seasonally variable parameters required in the mapping procedure: Wavelength and the transfer function from the SSH amplitude to depth‐integrated energy flux. The M2internal tides from the Luzon Strait are extracted using propagation direction determined in plane wave analysis. The satellite results show that the westward and eastward M2internal tides both demonstrate significant seasonal variation. The westward and eastward internal tides seesaw seasonally: The westward internal tides strengthen (weaken) in summer and fall (winter and spring); while the eastward internal tides strengthen (weaken) in winter and spring (summer and fall). We suggest that the seasonal seesaw is mainly determined by ocean stratification and the Kuroshio Current; however, further studies are needed to quantify their relative contributions.  more » « less
Award ID(s):
1947592 2149028
PAR ID:
10635943
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley Publisher
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
128
Issue:
3
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The M2internal tides in the northeastern South China Sea are studied using satellite altimeter data from 1992–2018. By an improved mapping technique that combines plane wave analysis and two‐dimensional spatial filtering, multiple internal tides are separately extracted with weak internal tides becoming detectable. The satellite results reveal for the first time a 300‐km‐long southward M2internal tidal beam in the northeastern South China Sea. The generation source is on the steep continental slope at the southern entrance to the Taiwan Strait. It ranges from 118–120°E along 22°N. Combining satellite‐observed internal solitary waves and internal tides, it is found that the onshore radiation evolves into nonlinear solitary waves and the offshore radiation in the form of linear internal tides. Based on the 26‐year‐coherent satellite results, the integrated southward energy flux is 0.18 GW, about 10% of the westward energy flux from the Luzon Strait. In the northeastern South China Sea, the westward and southward internal tides form a multiwave interference field, which features significant spatial variations in the magnitude and direction of energy flux. Further analyses reveal that the steep continental slope radiates southward semidiurnal M2and S2internal tides, but not diurnal K1and O1internal tides. 
    more » « less
  2. Abstract The Pacific oceanic input to the Arctic via the Bering Strait (important for western Arctic ice retreat, water properties, and nutrient supply) has been increasing for three decades. Using satellite Ocean Bottom Pressure (OBP) and Dynamic Ocean Topography (DOT) data, we show that long‐term trends in mooring data for a well‐sampled sub‐period (2003–2014) relate to summer OBP and DOT drop in the Arctic's East Siberian Sea (ESS), in turn caused by stronger westward ESS winds, and increased fall westward winds in the Bering Sea. OBP/DOT differences imply strong (0.17 psu/year) ESS salinization, likely caused by hitherto unappreciated increased Pacific inflow to that region. We find ESS OBP trends are (erroneously) reversed in older data versions, and estimate that ESS salinization may significantly mediate Bering Strait flow increase. These facts may explain why models assimilating older OBP data, or with erroneous Bering Strait salinities, fail to simulate observed Bering Strait flow increase. 
    more » « less
  3. Abstract Two moorings deployed for 75 days in 2019 and long‐term satellite altimetry data reveal a spatially complex and temporally variable internal tidal field at the Surface Water and Ocean Topography (SWOT) Cal/Val site off central California due to the interference of multiple seasonally‐variable sources. These two data sets offer complementary insights into the variability of internal tides in various time scales. The in situ measurements capture variations occurring from days to months, revealing ∼45% coherent tides. The north mooring displays stronger mode‐1 M2with an amplitude of ∼5.1 mm and exhibits distinct time‐varying energy and modal partitioning compared to the south mooring, which is only 30‐km away. The 27‐year altimetry data unveils the mean and seasonal variations of internal tides. The results indicate that the complex internal tidal field is attributed to multiple sources and seasonality. Mode‐1 tides primarily originate from the Mendocino Ridge and the 36.5–37.5°N California continental slope, while mode‐2 tides are generated by local seamounts and Monterey Bay. Seasonality is evident for mode‐1 waves from three directions. The highest variability of energy flux is found in the westward waves (±22%), while the lowest is in the southward waves (±13%). The large variability observed from the moorings cannot be solely explained by seasonality; additional factors like mesoscale eddies also play a role. This study emphasizes the importance of incorporating the seasonality and spatial variability of internal tides for the SWOT internal tidal correction, particularly in regions characterized by multiple tidal sources. 
    more » « less
  4. Previous satellite estimates of internal tides are usually based on 25 years of sea surface height (SSH) data from 1993 to 2017 measured by exact-repeat (ER) altimetry missions. In this study, new satellite estimates of internal tides are based on 8 years of SSH data from 2011 to 2018 measured mainly by nonrepeat (NR) altimetry missions. The two datasets are labeled ER25yr and NR8yr, respectively. NR8yr has advantages over ER25yr in observing internal tides because of its shorter time coverage and denser ground tracks. Mode-1 M2internal tides are mapped from both datasets following the same procedure that consists of two rounds of plane wave analysis with a spatial bandpass filter in between. The denser ground tracks of NR8yr make it possible to examine the impact of window size in the first-round plane wave analysis. Internal tides mapped using six different windows ranging from 40 to 160 km have almost the same results on global average, but smaller windows can better resolve isolated generation sources. The impact of time coverage is studied by comparing NR8yr160km and ER25yr160km, which are mapped using 160-km windows in the first-round plane wave analysis. They are evaluated using independent satellite altimetry data in 2020. NR8yr160km has larger model variance and can cause larger variance reduction, suggesting that NR8yr160km is a better model than ER25yr160km. Their global energies are 43.6 and 33.6 PJ, respectively, with a difference of 10 PJ. Their energy difference is a function of location. Significance StatementOur understanding of internal tides is mainly limited by the scarcity of field measurements with sufficient spatiotemporal resolution. Satellite altimetry offers a unique technique for observing and predicting internal tides on a global scale. Previous satellite observations of internal tides are mainly based on 25 years of data from exact-repeat altimetry missions. This paper demonstrates that internal tides can be mapped using 8 years of data made by nonrepeat altimetry missions. The new dataset has shorter time coverage and denser ground tracks; therefore, one can examine the impact of window size and time coverage on mapping internal tides from satellite altimetry. A comparison of models mapped from the two datasets sheds new light on the spatiotemporal variability of internal tides. 
    more » « less
  5. Abstract The yearly mode-1 M2internal tide model in 2019 is constructed using sea surface height measurements made by six concurrent satellite altimetry missions:Jason-3,Sentinel-3A,Sentinel-3B,CryoSat-2,Haiyang-2A, andSARAL/AltiKa. The model is developed following a three-step procedure consisting of two rounds of plane wave analysis with a spatial bandpass filter in between. Prior mesoscale correction is made on the altimeter data using AVISO gridded mesoscale fields. The model is labeled Y2019, because it represents the 1-yr-coherent internal tide field in 2019. In contrast, the model developed using altimeter data from 1992 to 2017 is labeled MY25, because it represents the multiyear-coherent internal tide field in 25 years. Thanks to the new mapping technique, model errors in Y2019 are as low as those in MY25. Evaluation using independent altimeter data confirms that Y2019 reduces slightly less variance (∼6%) than MY25. Further analysis reveals that the altimeter data from five missions (withoutJason-3) can yield an internal tide model of almost the same quality. Comparing Y2019 and MY25 shows that mode-1 M2internal tides are subject to significant interannual variability in both amplitude and phase, and their interannual variations are a function of location. Along southward internal tides from Amukta Pass, the energy flux in Y2019 is 2 times larger and the phase speed is about 1.1% faster. This mapping technique has been applied successfully to 2017 and 2018. This work demonstrates that yearly internal tides can be observed by concurrent altimetry missions and their interannual variations can be determined. Significance StatementThis work is motivated to study the interannual variations of internal tides using observation-based yearly internal tide models from satellite altimetry. Previous satellite observations of internal tides are usually based on 25 years of altimeter data from 1993 to 2017. The yearly subsetted altimeter data are short, so that the resultant yearly models are overwhelmed by noise. A new mapping technique is developed and demonstrated in this paper. It paves a path to study the interannual and decadal variations of internal tides on a global scale and monitor the global ocean changes by tracking long-range internal tides. 
    more » « less