skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 28, 2026

Title: Secondary organic aerosol in urban China: A distinct chemical regime for air pollution studies
In the past decades, China has witnessed high air pollution associated with rapid economic development, although regulatory efforts have alleviated the situation since 2013. Haze events characterized by high particulate matter (PM) levels in China are not only of enormous magnitude but also represent a distinct chemical regime. Once driven by direct emissions, these high-PM episodes are now more affected by secondary aerosol, especially secondary organic aerosol (SOA). This Review synthesizes the state of the science of SOA formation in urban China, specifically (i) how the dominance of anthropogenic precursors affects SOA formation, (ii) what are the prevailing SOA formation mechanisms, and (iii) how important are the multipollutant and multiphase processes in SOA formation and evolution. We also highlight essential directions for future studies.  more » « less
Award ID(s):
2203982
PAR ID:
10635988
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science
Volume:
389
Issue:
6763
ISSN:
0036-8075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aqueous‐phase uptake and processing of water‐soluble organic compounds can promote secondary organic aerosol (SOA) production. We evaluated the contributions of aqueous‐phase chemistry to summertime urban SOA at two sites in New York City. The relative role of aqueous‐phase processing varied with chemical and environmental conditions, with evident daytime SOA enhancements (e.g., >1 μg/m3) during periods with relative humidities (RH) exceeding 65% and often higher temperatures. Oxygenated organic aerosol (OOA) production was also sensitive to secondary inorganic aerosols, in part through their influence on aerosol liquid water. On average, high‐RH periods exhibited a 69% increase in less‐oxidized OOA production in Queens, NY. These enhancements coincided with southerly backward trajectories and greater inorganic aerosol concentrations, yet showed substantial intra‐city variability between Queens and Manhattan. The observed aqueous‐phase SOA production, even with historically low sulfate and nitrate aerosol loadings, highlights both opportunities and challenges for continued reductions in summertime PM2.5in urban communities. 
    more » « less
  2. Abstract. This study describes a modeling framework, model evaluation, and source apportionment to understand the causes of Los Angeles (LA) air pollution. A few major updates are applied to the Community Multiscale Air Quality (CMAQ) model with a high spatial resolution (1 km × 1 km). The updates include dynamic traffic emissions based on real-time, on-road information and recent emission factors and secondary organic aerosol (SOA) schemes to represent volatile chemical products (VCPs). Meteorology is well predicted compared to ground-based observations, and the emission rates from multiple sources (i.e., on-road, volatile chemical products, area, point, biogenic, and sea spray) are quantified. Evaluation of the CMAQ model shows that ozone is well predicted despite inaccuracies in nitrogen oxide (NOx) predictions. Particle matter (PM) is underpredicted compared to concurrent measurements made with an aerosol mass spectrometer (AMS) in Pasadena. Inorganic aerosol is well predicted, while SOA is underpredicted. Modeled SOA consists of mostly organic nitrates and products from oxidation of alkane-like intermediate volatility organic compounds (IVOCs) and has missing components that behave like less-oxidized oxygenated organic aerosol (LO-OOA). Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated (VOC-sensitive), with the largest sensitivity of O3 to changes in VOCs in the urban core. Differing oxidative capacities in different regions impact the nonlinear chemistry leading to PM and SOA formation, which is quantified in this study. 
    more » « less
  3. Abstract. Secondary organic aerosols (SOA) can exist in liquid, semi-solid or amorphous solid states, which are rarely accounted for in current chemical transport models (CTMs). Missing the information of SOA phase state and viscosity in CTMs impedes accurate representation of SOA formation and evolution, affecting the predictions of aerosol effects on air quality and climate. We have previously developed a method to estimate the glass transition temperature (Tg) of an organic compound based on volatility. In this study, we apply this method to predict the phase state and viscosity of SOA particles over China in summer of 2018 using the Weather Research and Forecasting model coupled to Chemistry (WRF-Chem). This is the first time that spatial distributions of the SOA phase state over China are investigated by a regional CTM. Simulations show that Tg values of dry SOA range from ~287 K to 305 K, with higher values in the northwestern China where SOA particles have larger mass fractions of low volatility compounds. Considering water uptake by SOA particles, the SOA viscosity also shows a prominent geospatial gradient that highly viscous or solid SOA particles are mainly found in the northwestern China. The lowest and highest SOA viscosity values both occur over the Qinghai-Tibet Plateau that the solid phase state is predicted over dry and high-altitude areas and the liquid phase state is predicted mainly in the south of the plateau with high relative humidity during the summer monsoon season. The characteristic mixing timescale of organic molecules in 200 nm SOA particles is calculated based on the simulated particle viscosity and the bulk diffusion coefficient of organic molecules. Calculations show that during the simulated period the percent time of the mixing timescale longer than 1 h is > 70 % at the surface and at 500 hPa in most areas of the northern China, indicating that kinetic partitioning considering the bulk diffusion in viscous particles may be required for more accurate prediction of SOA mass concentrations and size distributions over these areas. Sensitivity simulations show that including the formation of extremely low-volatile organic compounds, the percent time that a SOA particle is in the liquid phase state decreases by up to 12 % in the southeastern China during the simulated period. With an assumption that the organic and inorganic compounds are always internally mixed in one phase, we show that the water absorbed by inorganic species can significantly lower the simulated viscosity over the southeastern China. This indicates that constraining the uncertainties in simulated SOA volatility distributions and accurately predicting the occurrence of phase separation would improve prediction of viscosity in multicomponent particles in southeastern China. 
    more » « less
  4. Abstract Furans are a major class of volatile organic compounds emitted from biomass burning. Their high reactivity with atmospheric oxidants leads to the formation of secondary organic aerosol (SOA), including secondary brown carbon (BrC) that can affect global climate via interactions with solar radiation. Here, we investigate the optical properties and chemical composition of SOA generated via photooxidation of furfural, 2‐methylfuran, and 3‐methylfuran under dry (RH < 5%) and humid (RH ∼ 50%) conditions in the presence of nitrogen oxides (NOx) and ammonium sulfate seed aerosol. Dry furfural oxidation has the greatest BrC formation, including reduced nitrogen‐containing organic compounds (NOCs) in SOA, which are dominated by amines and amides formed from reactions between carbonyls and ammonia/ammonium. Based on the products detected, we propose novel formation pathways of NOCs in furfural photooxidation, which can contribute to BrC via accretion reactions during the photochemical aging of biomass burning plumes. 
    more » « less
  5. Acid-catalyzed multiphase chemistry of isoprene epoxydiols (IEPOX) on sulfate aerosol produces substantial amounts of water-soluble secondary organic aerosol (SOA) constituents, including 2-methyltetrols, methyltetrol sulfates, and oligomers thereof in atmospheric fine particulate matter (PM 2.5 ). These constituents have commonly been measured by gas chromatography interfaced to electron ionization mass spectrometry (GC/EI-MS) with prior derivatization or by reverse-phase liquid chromatography interfaced to electrospray ionization high-resolution mass spectrometry (RPLC/ESI-HR-MS). However, both techniques have limitations in explicitly resolving and quantifying polar SOA constituents due either to thermal degradation or poor separation. With authentic 2-methyltetrol and methyltetrol sulfate standards synthesized in-house, we developed a hydrophilic interaction liquid chromatography (HILIC)/ESI-HR-quadrupole time-of-flight mass spectrometry (QTOFMS) protocol that can chromatographically resolve and accurately measure the major IEPOX-derived SOA constituents in both laboratory-generated SOA and atmospheric PM 2.5 . 2-Methyltetrols were simultaneously resolved along with 4–6 diastereomers of methyltetrol sulfate, allowing efficient quantification of both major classes of SOA constituents by a single non-thermal analytical method. The sum of 2-methyltetrols and methyltetrol sulfates accounted for approximately 92%, 62%, and 21% of the laboratory-generated β-IEPOX aerosol mass, laboratory-generated δ-IEPOX aerosol mass, and organic aerosol mass in the southeastern U.S., respectively, where the mass concentration of methyltetrol sulfates was 171–271% the mass concentration of methyltetrol. Mass concentrations of methyltetrol sulfates were 0.39 and 2.33 μg m −3 in a PM 2.5 sample collected from central Amazonia and the southeastern U.S., respectively. The improved resolution clearly reveals isomeric patterns specific to methyltetrol sulfates from acid-catalyzed multiphase chemistry of β- and δ-IEPOX. We also demonstrate that conventional GC/EI-MS analyses overestimate 2-methyltetrols by up to 188%, resulting (in part) from the thermal degradation of methyltetrol sulfates. Lastly, C 5 -alkene triols and 3-methyltetrahydrofuran-3,4-diols are found to be largely GC/EI-MS artifacts formed from thermal degradation of 2-methyltetrol sulfates and 3-methyletrol sulfates, respectively, and are not detected with HILIC/ESI-HR-QTOFMS. 
    more » « less