Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the past decades, China has witnessed high air pollution associated with rapid economic development, although regulatory efforts have alleviated the situation since 2013. Haze events characterized by high particulate matter (PM) levels in China are not only of enormous magnitude but also represent a distinct chemical regime. Once driven by direct emissions, these high-PM episodes are now more affected by secondary aerosol, especially secondary organic aerosol (SOA). This Review synthesizes the state of the science of SOA formation in urban China, specifically (i) how the dominance of anthropogenic precursors affects SOA formation, (ii) what are the prevailing SOA formation mechanisms, and (iii) how important are the multipollutant and multiphase processes in SOA formation and evolution. We also highlight essential directions for future studies.more » « lessFree, publicly-accessible full text available August 28, 2026
-
Hemati, Sara (Ed.)The application of 222 nm light from KrCl excimer lamps (GUV222 or far-UVC) is a promising approach to reduce the indoor transmission of airborne pathogens, including the SARS-CoV-2 virus. GUV222 inactivates airborne pathogens and is believed to be relatively safe for human skin and eye exposure. However, UV light initiates photochemical reactions which may negatively impact indoor air quality. We conducted a series of experiments to assess the formation of ozone ( ), and resulting formation of secondary organic aerosols (SOA), induced by commercial far-UVC devices in an office environment (small conference room) with an air exchange rate of . We studied scenarios with a single far-UVC lamp, corresponding to the manufacturer’s recommendations for disinfection of a space that size, and with four far-UVC lamps, to test conditions of greater far-UVC fluence. The single lamp did not significantly impact or fine particulate matter levels in the room. Consistent with previous studies in the literature, the higher far-UVC fluences lead to increases in of 5 to 10 ppb above background, and minor increases in particulate matter (16% ± 10 % increase in particle number count). The use of far-UVC at minimum intensities required for disinfection, and in conjunction with adequate ventilation rates (e.g. ANSI/ASHRAE recommendations), may allow the reduction of airborne pathogen levels while minimizing the formation of air pollutants in furnished indoor environments.more » « lessFree, publicly-accessible full text available August 11, 2026
-
The indoor surfaces of dwellings across the United States range exhibit a wide range of chemical compositions and physical properties, which impacts semi-volatile partitioning, heterogeneous chemistry and the overall properties of indoor air.more » « lessFree, publicly-accessible full text available June 18, 2026
-
Free, publicly-accessible full text available May 15, 2026
An official website of the United States government
