skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 10, 2026

Title: Automated gait event detection for exoskeleton-assisted walking using a long short-term memory model with ground reaction force and heel marker data
Traditional gait event detection methods for heel strike and toe-off utilize thresholding with ground reaction force (GRF) or kinematic data, while recent methods tend to use neural networks. However, when subjects’ walking behaviors are significantly altered by an assistive walking device, these detection methods tend to fail. Therefore, this paper introduces a new long short-term memory (LSTM)-based model for detecting gait events in subjects walking with a pair of custom ankle exoskeletons. This new model was developed by multiplying the weighted output of two LSTM models, one with GRF data as the input and one with heel marker height as input. The gait events were found using peak detection on the final model output. Compared to other machine learning algorithms, which use roughly 8:1 training-to-testing data ratio, this new model required only a 1:79 training-to-testing data ratio. The algorithm successfully detected over 98% of events within 16ms of manually identified events, which is greater than the 65% to 98% detection rate of previous LSTM algorithms. The high robustness and low training requirements of the model makes it an excellent tool for automated gait event detection for both exoskeleton-assisted and unassisted walking of healthy human subjects.  more » « less
Award ID(s):
1930430
PAR ID:
10636123
Author(s) / Creator(s):
;
Editor(s):
Gu, Yaodong
Publisher / Repository:
Public Library of Science ONE
Date Published:
Journal Name:
PLOS ONE
Volume:
20
Issue:
2
ISSN:
1932-6203
Page Range / eLocation ID:
e0315186
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Template models, such as the Bipedal Spring-Loaded Inverted Pendulum and the Virtual Pivot Point, have been widely used as low-dimensional representations of the complex dynamics in legged locomotion. Despite their ability to qualitatively match human walking characteristics like M-shaped ground reaction force (GRF) profiles, they often exhibit discrepancies when compared to experimental data, notably in overestimating vertical center of mass (CoM) displacement and underestimating gait event timings (touchdown/ liftoff). This paper hypothesizes that the constant leg stiffness of these models explains the majority of these discrepancies. The study systematically investigates the impact of stiffness variations on the fidelity of model fittings to human data, where an optimization framework is employed to identify optimal leg stiffness trajectories. The study also quantifies the effects of stiffness variations on salient characteristics of human walking (GRF profiles and gait event timing). The optimization framework was applied to 24 subjects walking at 40% to 145% preferred walking speed (PWS). The findings reveal that despite only modifying ground forces in one direction, variable leg stiffness models exhibited a >80% reduction in CoM error across both the B-SLIP and VPP models, while also improving prediction of human GRF profiles. However, the accuracy of gait event timing did not consistently show improvement across all conditions. The resulting stiffness profiles mimic walking characteristics of ankle push-off during double support and reduced CoM vaulting during single support. 
    more » « less
  2. This paper presents a portable inertial measurement unit (IMU)-based motion sensing system and proposed an adaptive gait phase detection approach for non-steady state walking and multiple activities (walking, running, stair ascent, stair descent, squat) monitoring. The algorithm aims to overcome the limitation of existing gait detection methods that are time-domain thresholding based for steady-state motion and are not versatile to detect gait during different activities or different gait patterns of the same activity. The portable sensing suit is composed of three IMU sensors (wearable sensors for gait phase detection) and two footswitches (ground truth measurement and not needed for gait detection of the proposed algorithm). The acceleration, angular velocity, Euler angle, resultant acceleration, and resultant angular velocity from three IMUs are used as the input training data and the data of two footswitches used as the training label data (single support, double support, swing phase). Three methods 1) Logistic Regression (LR), 2) Random Forest Classifier (RF), and 3) Artificial Neural Network (NN) are used to build the gait phase detection models. The result shows our proposed gait phase detection with Random Forest Classifier can achieve 98.94% accuracy in walking, 98.45% in running, 99.15% in stair-ascent, 99.00% in stair-descent, and 99.63% in squatting. It demonstrates that our sensing suit can not only detect the gait status in any transient state but also generalize to multiple activities. Therefore, it can be implemented in real-time monitoring of human gait and control of assistive devices. 
    more » « less
  3. Step length is a critical gait parameter that allows a quantitative assessment of gait asymmetry. Gait asymmetry can lead to many potential health threats such as joint degeneration, difficult balance control, and gait inefficiency. Therefore, accurate step length estimation is essential to understand gait asymmetry and provide appropriate clinical interventions or gait training programs. The conventional method for step length measurement relies on using foot-mounted inertial measurement units (IMUs). However, this may not be suitable for real-world applications due to sensor signal drift and the potential obtrusiveness of using distal sensors. To overcome this challenge, we propose a deep convolutional neural network-based step length estimation using only proximal wearable sensors (hip goniometer, trunk IMU, and thigh IMU) capable of generalizing to various walking speeds. To evaluate this approach, we utilized treadmill data collected from sixteen able-bodied subjects at different walking speeds. We tested our optimized model on the overground walking data. Our CNN model estimated the step length with an average mean absolute error of 2.89 ± 0.89 cm across all subjects and walking speeds. Since wearable sensors and CNN models are easily deployable in real-time, our study findings can provide personalized real-time step length monitoring in wearable assistive devices and gait training programs. 
    more » « less
  4. This study aims to detect abnormal human gait patterns through the dynamic response of floor structures during foot-floor interactions. Gait abnormality detection is critical for the early discovery and progressive tracking of musculoskeletal and neurological disorders, such as Parkinson’s and Cerebral Palsy. Especially, analyzing the foot-floor contacts during walking provides important insights into gait patterns, such as contact area, contact force, and contact time, enabling gait abnormality detection through these measurements. Existing studies use various sensing devices to capture such information, including cameras, wearables, and force plates. However, the former two lack force-related information, making it difficult to identify the causes of gait health issues, while the latter has limited coverage of the walking path. In this study, we leverage footstep-induced structural vibrations to infer foot-floor contact profiles, which allows force-informed and more wide-ranged gait abnormality detection. The main challenge lies in modeling the complex force transfer mechanism between the foot and the floor surfaces, leading to difficulty in reconstructing the force and contact profile during foot-floor interaction using structural vibrations. To overcome the challenge, we first characterize the floor vibration for each contact type (e.g., heel, midfoot, and toe contact) to understand how contact forces and areas affect the induced floor vibration. Then, we leverage the time-frequency response spectrum resulting from those contacts to develop features that are representative of each contact type. Finally, gait abnormalities are detected by comparing the predicted foot-floor contact force and motion with the healthy gait. To evaluate our approach, we conducted a real-world walking experiment with 8 subjects. Our approach achieves 91.6% and 96.7% accuracy in predicting contact type and time, respectively, leading to 91.9% accuracy in detecting various types of gait abnormalities, including asymmetry, dragging, and midfoot/toe contacts. 
    more » « less
  5. This paper presents the design and preliminary testing of an instrumented exoskeleton system, which is targeted at collecting gait data of the human locomotion to support the controller development of lower-limb wearable robots. This compact and lightweight device features a unique two-degree-of-freedom joint to minimize the interference to the user movement and a simple yet effective adjustment mechanism to fit subjects at different heights. For the gait measurement, the device incorporates embedded joint goniometers to obtain the knee and ankle positions, and inertial measurement units to obtain three-dimensional kinematic information. Force-sensing resistors are also incorporated into the shoe insole for plantar pressure measurement. Sensor signals are routed to an onboard microcontroller system for data storage and transfer, and the system is fully self-contained with onboard battery to facilitate data collection in various environments. A prototype of the exoskeleton was fabricated, and preliminary testing was conducted on two healthy subjects in various postures and modes of movement (walking, sitting, standing, stair climbing, etc.). The evaluation of a temporal event detection test showed no more than 5.5% mean variation in the measure of step counts by the sensory system and video annotation. These results indicate that the exoskeleton can provide an accurate measurement of gait information, using measurements taken from external video recordings as the benchmark in this preliminary validation study. 
    more » « less