Abstract Human ambulation is typically characterized during steady-state isolated tasks (e.g., walking, running, stair ambulation). However, general human locomotion comprises continuous adaptation to the varied terrains encountered during activities of daily life. To fill an important gap in knowledge that may lead to improved therapeutic and device interventions for mobility-impaired individuals, it is vital to identify how the mechanics of individuals change as they transition between different ambulatory tasks, and as they encounter terrains of differing severity. In this work, we study lower-limb joint kinematics during the transitions between level walking and stair ascent and descent over a range of stair inclination angles. Using statistical parametric mapping, we identify where and when the kinematics of transitions are unique from the adjacent steady-state tasks. Results show unique transition kinematics primarily in the swing phase, which are sensitive to stair inclination. We also train Gaussian process regression models for each joint to predict joint angles given the gait phase, stair inclination, and ambulation context (transition type, ascent/descent), demonstrating a mathematical modeling approach that successfully incorporates terrain transitions and severity. The results of this work further our understanding of transitory human biomechanics and motivate the incorporation of transition-specific control models into mobility-assistive technology.
more »
« less
Machine Learning Based Adaptive Gait Phase Estimation Using Inertial Measurement Sensors
This paper presents a portable inertial measurement unit (IMU)-based motion sensing system and proposed an adaptive gait phase detection approach for non-steady state walking and multiple activities (walking, running, stair ascent, stair descent, squat) monitoring. The algorithm aims to overcome the limitation of existing gait detection methods that are time-domain thresholding based for steady-state motion and are not versatile to detect gait during different activities or different gait patterns of the same activity. The portable sensing suit is composed of three IMU sensors (wearable sensors for gait phase detection) and two footswitches (ground truth measurement and not needed for gait detection of the proposed algorithm). The acceleration, angular velocity, Euler angle, resultant acceleration, and resultant angular velocity from three IMUs are used as the input training data and the data of two footswitches used as the training label data (single support, double support, swing phase). Three methods 1) Logistic Regression (LR), 2) Random Forest Classifier (RF), and 3) Artificial Neural Network (NN) are used to build the gait phase detection models. The result shows our proposed gait phase detection with Random Forest Classifier can achieve 98.94% accuracy in walking, 98.45% in running, 99.15% in stair-ascent, 99.00% in stair-descent, and 99.63% in squatting. It demonstrates that our sensing suit can not only detect the gait status in any transient state but also generalize to multiple activities. Therefore, it can be implemented in real-time monitoring of human gait and control of assistive devices.
more »
« less
- Award ID(s):
- 1830613
- PAR ID:
- 10112269
- Date Published:
- Journal Name:
- 2019 Design of Medical Devices Conference
- Page Range / eLocation ID:
- V001T09A010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many people struggle with mobility impairments due to lower limb amputations. To participate in society, they need to be able to walk on a wide variety of terrains, such as stairs, ramps, and level ground. Current lower limb powered prostheses require different control strategies for varying ambulation modes, and use data from mechanical sensors within the prosthesis to determine which ambulation mode the user is in. However, it can be challenging to distinguish between ambulation modes. Efforts have been made to improve classification accuracy by adding electromyography information, but this requires a large number of sensors, has a low signal-to-noise ratio, and cannot distinguish between superficial and deep muscle activations. An alternative sensing modality, A-mode ultrasound, can detect and distinguish between changes in superficial and deep muscles. It has also shown promising results in upper limb gesture classification. Despite these advantages, A-mode ultrasound has yet to be employed for lower limb activity classification. Here we show that A- mode ultrasound can classify ambulation mode with comparable, and in some cases, superior accuracy to mechanical sensing. In this study, seven transfemoral amputee subjects walked on an ambulation circuit while wearing A-mode ultrasound transducers, IMU sensors, and their passive prosthesis. The circuit consisted of sitting, standing, level-ground walking, ramp ascent, ramp descent, stair ascent, and stair descent, and a spatial–temporal convolutional network was trained to continuously classify these seven activities. Offline continuous classification with A-mode ultrasound alone was able to achieve an accuracy of 91.8±3.4%, compared with 93.8±3.0%, when using kinematic data alone. Combined kinematic and ultrasound produced 95.8±2.3% accuracy. This suggests that A-mode ultrasound provides additional useful information about the user’s gait beyond what is provided by mechanical sensors, and that it may be able to improve ambulation mode classification. By incorporating these sensors into powered prostheses, users may enjoy higher reliability for their prostheses, and more seamless transitions between ambulation modes.more » « less
-
Powered knee-ankle prostheses can offer benefits over conventional passive devices during stair locomotion by providing biomimetic net-positive work and active control of joint angles. However, many modern control approaches for stair ascent and descent are often limited by time-consuming hand-tuning of user/task-specific parameters, predefined trajectories that remove user volition, or heuristic approaches that cannot be applied to both stair ascent and descent. This work presents a phase-based hybrid kinematic and impedance controller (HKIC) that allows for semi-volitional, biomimetic stair ascent and descent at a variety of step heights. We define a unified phase variable for both stair ascent and descent that utilizes lower-limb geometry to adjust to different users and step heights. We extend our prior data-driven impedance model for variable-incline walking, modifying the cost function and constraints to create a continuously-varying impedance parameter model for stair ascent and descent over a continuum of step heights. Experiments with above-knee amputee participants (N=2) validate that our HKIC controller produces biomimetic ascent and descent joint kinematics, kinetics, and work across four step height configurations. We also show improved kinematic performance with our HKIC controller in comparison to a passive microprocessor-controlled device during stair locomotion.more » « less
-
Passive prostheses cannot provide the net positive work required at the knee and ankle for step-over stair ascent. Powered prostheses can provide this net positive work, but user synchronization of joint motion and power input are critical to enabling natural stair ascent gaits. In this work, we build on previous phase variable-based control methods for walking and propose a stair ascent controller driven by the motion of the user's residual thigh. We use reference kinematics from an able-bodied dataset to produce knee and ankle joint trajectories parameterized by gait phase. We redefine the gait cycle to begin at the point of maximum hip flexion instead of heel strike to improve the phase estimate. Able-bodied bypass adapter experiments demonstrate that the phase variable controller replicates normative able-bodied kinematic trajectories with a root mean squared error of 12.66 deg and 2.64 deg for the knee and ankle, respectively. The knee and ankle joints provided on average 0.387J/kg and 0.212J/kg per stride, compared to the normative averages of 0.335J/kg and 0.207J/kg, respectively. Thus, this controller allows powered knee-ankle prostheses to perform net positive mechanical work to assist stair ascent.more » « less
-
We use commercial wearable sensors to collect three-dimensional acceleration signals from various gaits. Then, we organize the collected measurements in three-way tensors and present a simple, efficient gait classification scheme based on TUCKER2 tensor decomposition. The proposed scheme derives as multi-linear generalization of the nearest-subspace classifier. Our experimental studies show that the proposed approach manages to automatically identify the motion axes of interest and classify walking, jogging, and running gaits with high accuracy.more » « less