Abstract A limitation in fine-tuned tree-ring radiocarbon (14C) data is normally associated with overall data uncertainty. Tree-ring14C data variance as a result of sample heterogeneity can be reduced by adopting best practices at the time of sample collection and subsequent preparation and analysis. Variance-reduction of14C data was achieved by meticulous sample handling during increment core or cross-sectional cuttings, in-laboratory wood reductions, and cellulose fiber homogenization of whole rings. To demonstrate the performance of those procedures to final14C results, we took advantage of the replicated data from assigned calendar years of two Pantropical post-1950 AD tree-ring14C reconstructions. TwoCedrela fissilisVell. trees spaced 22.5 km apart, and two trees of this species together with onePeltogyne paniculataBenth tree spaced 0.2 to 5 km apart were sampled in a tropical dry and moist forest, respectively. Replicate14C data were then obtained from grouped tree-ring samples from each site. A total of 88% of the replicated14C results fell into a remarkably consistent precision/accuracy range of 0.3% or less, even though multiple tree species were used as pairs/sets. This finding illustrates how adopting a few simple strategies, in tandem with already established chemical extraction procedures and high-precision14C analysis, can improve14C data results of tropical trees.
more »
« less
This content will become publicly available on June 1, 2026
Reconstructing Annual Δ 14 C During Miyake Events Using Deciduous and Evergreen Trees
Abstract Cosmic rays and solar energetic particles pose significant risks to satellites, space stations, and human space exploration. They also produce atmospheric radiocarbon (14C), which enters the carbon cycle and is recorded by paleoenvironmental proxies. Miyake events, rapid increases in atmospheric14C, first identified in annual tree rings and later confirmed through ice core10Be and36Cl isotopes, are thought to result from extreme solar activity, are seven events identified over the last 14,300 years. However, uncertainty in annual14C measurements limits precise inferences about their timing and magnitude. This study examines uncertainties in14C during two Miyake events (774 CE and 993 CE) across trees with differing uptake, storage, and allocation of carbon. We hypothesize that tree species physiology affects tree‐ring Δ14C, with deciduous species recording lagged, attenuated tree‐ring Δ14C relative to evergreen species. Using Δ14C data from pine and larch in Mongolia and a larger multi‐species Northern Hemisphere data set, we employed a Bayesian framework to estimate the timing, duration, and magnitude of these two events. Our AMS results showed no differences in Δ14C between evergreen and deciduous species growing at similar sites during the 774 CE event. The 993 CE event was variable, but parameter estimates were consistent between species. Northern Hemisphere comparisons indicated that annual series of Δ14C from evergreen and deciduous conifers yielded relatively more precise modeled estimates of start date and duration relative to deciduous broadleaf species. Future studies should consider the role of species‐specific carbon allocation strategies and storage dynamics in determining the radiocarbon response to Miyake events.
more »
« less
- Award ID(s):
- 2411569
- PAR ID:
- 10636346
- Publisher / Repository:
- Global Biogeochemical Cycles
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 39
- Issue:
- 6
- ISSN:
- 0886-6236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The science of tropical dendrochronology is now emerging in regions where tree-ring dating had previously not been considered possible. Here, we combine wood anatomical microsectioning techniques and radiocarbon analysis to produce the first tree-ring chronology with verified annual periodicity for a new dendrochronological species, Neltuma alba (commonly known as “algarrobo blanco”) in the tropical Andes of Bolivia. First, we generated a preliminary chronology composed of six trees using traditional dendrochronological methods (i.e., cross-dating). We then measured the 14 C content on nine selected tree rings from two samples and compared them with the Southern Hemisphere (SH) atmospheric 14 C curves, covering the period of the bomb 14 C peak. We find consistent offsets of 5 and 12 years, respectively, in the calendar dates initially assigned, indicating that several tree rings were missing in the sequence. In order to identify the tree-ring boundaries of the unidentified rings we investigated further by analyzing stem wood microsections to examine anatomical characteristics. These anatomical microsections revealed the presence of very narrow terminal parenchyma defining several tree-ring boundaries within the sapwood, which was not visible in sanded samples under a stereomicroscope. Such newly identified tree rings were consistent with the offsets shown by the radiocarbon analysis and allowed us to correct the calendar dates of the initial chronology. Additional radiocarbon measurements over a new batch of rings of the corrected dated samples resulted in a perfect match between the dendrochronological calendar years and the 14 C dating, which is based on good agreement between the tree-ring 14 C content and the SH 14 C curves. Correlations with prior season precipitation and temperature reveal a strong legacy effect of climate conditions prior to the current Neltuma alba growing season. Overall, our study highlights much potential to complement traditional dendrochronology in tree species with challenging tree-ring boundaries with wood anatomical methods and 14 C analyses. Taken together, these approaches confirm that Neltuma alba can be accurately dated and thereby used in climatic and ecological studies in tropical and subtropical South America.more » « less
-
Abstract The Sun sporadically produces eruptive events leading to intense fluxes of solar energetic particles (SEPs) that dramatically disrupt the near-Earth radiation environment. Such events have been directly studied for the last decades but little is known about the occurrence and magnitude of rare, extreme SEP events. Presently, a few events that produced measurable signals in cosmogenic radionuclides such as 14 C, 10 Be and 36 Cl have been found. Analyzing annual 14 C concentrations in tree-rings from Switzerland, Germany, Ireland, Russia, and the USA we discovered two spikes in atmospheric 14 C occurring in 7176 and 5259 BCE. The ~2% increases of atmospheric 14 C recorded for both events exceed all previously known 14 C peaks but after correction for the geomagnetic field, they are comparable to the largest event of this type discovered so far at 775 CE. These strong events serve as accurate time markers for the synchronization with floating tree-ring and ice core records and provide critical information on the previous occurrence of extreme solar events which may threaten modern infrastructure.more » « less
-
ABSTRACT In 2018 Pearson et al. published a new sequence of annual radiocarbon ( 14 C) data derived from oak ( Quercus sp.) trees from Northern Ireland and bristlecone pine ( Pinus longaeva ) from North America across the period 1700–1500 BC. The study indicated that the more highly resolved shape of an annually based calibration dataset could improve the accuracy of 14 C calibration during this period. This finding had implications for the controversial dating of the eruption of Thera in the Eastern Mediterranean. To test for interlaboratory variation and improve the robustness of the annual dataset for calibration purposes, we have generated a replicate sequence from the same Irish oaks at ETH Zürich. These data are compatible with the Irish oak 14 C dataset previously produced at the University of Arizona and are used (along with additional data) to examine inter-tree and interlaboratory variation in multiyear annual 14 C time-series. The results raise questions about regional 14 C offsets at different scales and demonstrate the potential of annually resolved 14 C for refining subdecadal and larger scale features for calibration, solar reconstruction, and multiproxy synchronization.more » « less
-
Abstract The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4–43% higher growth rates, 14–17% higher survival rates and 4–7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks.more » « less
An official website of the United States government
