Despite the rapidly growing interest in exploiting millimeter and terahertz waves for wireless data transfer, the role of reflected non-line-of-sight (NLOS) paths in wireless networking is one of the least explored questions. In this paper, we investigate the idea of harnessing these specular NLOS paths for communication in directional networks at frequencies above 100 GHz. We explore several illustrative transmitter architectures, namely, a conventional substrate-lens dipole antenna and a leaky-wave antenna. We investigate how these high-gain directional antennas offer both new challenges and new opportunities for exploiting NLOS paths. Our results demonstrate the sensitivity to antenna alignment, power spectrum variations, and the disparity in supported bandwidth of various line-of-sight (LOS) and reflected path configurations. We show that NLOS paths can, under certain circumstances, offer even higher data rates than the conventional LOS path. This result illustrates the unique opportunities that distinguish THz wireless systems from those that operate at lower frequencies.
more »
« less
This content will become publicly available on April 1, 2026
To Transfer or Not to Transfer an Electron: Anionic Metal Centers Reveal Dual Functionality for Polymerization Reactions
Catalysts with anionic metal centers have recently been proposed to enhance the performance of various chemical processes. Here, we focus on the reactivity of Co(CO)4− for the polymerization of aziridine and carbon monoxide to form polypeptoids, motivated by earlier experimental studies. We used multi-reference and density functional theory methods to investigate possible reaction mechanisms and provide insights into the role of the negatively charged cobalt center. Two different reaction paths were identified. In the first path, Co− acts as a nucleophile, donating an electron pair to the reaction substrate, while in the second path, it performs a single electron transfer to the substrate, initiating radical polymerization. The difference in the activation barriers for the two key steps is small and falls within the accuracy of our calculations. As suggested in the literature, solvent effects can play a primary role in determining the outcomes of such reactions. Future investigations will involve different metals or ligands and will investigate the effects of these two reaction paths on other chemical transformations.
more »
« less
- Award ID(s):
- 1940456
- PAR ID:
- 10636404
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 30
- Issue:
- 7
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 1570
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spatial atomic layer deposition (SALD) is a powerful thin-film deposition technique to control surfaces and interfaces at the nanoscale. To further develop SALD technology, there is need to deepen our understanding of the effects that process parameters have on the deposited film uniformity. In this study, a 3D computational model that incorporates laminar-flow fluid mechanics and transport of diluted species is developed to provide insight into the velocity streamlines and partial-pressure distributions within the process region of a close-proximity atmospheric-pressure spatial atomic layer deposition (AP-SALD) system. The outputs of this transport model are used as the inputs to a surface reaction model that simulates the self-limiting chemical reactions. These coupled models allow for prediction of the film thickness profiles as they evolve in time, based on a relative depositor/substrate motion path. Experimental validation and model parameterization are performed using a mechatronic AP-SALD system, which enable the direct comparison of the simulated and experimentally measured geometry of deposited TiO2 films. Characteristic features in the film geometry are identified, and the model is used to reveal their physical and chemical origins. The influence of custom motion paths on the film geometry is also experimentally and computationally investigated. In the future, this digital twin will allow for the capability to rapidly simulate and predict SALD behavior, enabling a quantitative evaluation of the manufacturing trade-offs between film quality, throughput, cost, and sustainability for close-proximity AP-SALD systems.more » « less
-
Spin crossover (SCO) is one of the most widely studied phenomena in transition metal complexes, in part due to the possible technological applications of such species in molecular electronics, memory storage, electrochromics, and display devices. Any transition metal complex with a d4–d7electron configuration, such as 2+ and 3+ ions of Cr, Mn, Fe, and Co, can theoretically exhibit SCO effects which depend highly on the coordination environment and ligand field strength. Redox-coupled SCO processes provide a mechanism to enhance the molecular bistability and trigger transitions between low- and high-spin states. Similar reaction mechanisms often occur in electrocatalytic and enzymatic reactions. The electrochemical response of redox-coupled SCO processes can be modeled as a square scheme containing two one-electron reactions and two chemical steps, resulting in a separation of anodic and cathodic waves. Herein we describe the influence of ligand coordination and structural changes on the redox-coupled SCO properties of several Co complexes. This structural-functional analysis allows us to understand the fundamental properties that control redox-coupled SCO processes and optimize redox bistability for a range of applications.more » « less
-
The new chiral and configurationally stable cyclopentadienyl amidinate (CPAM) hafnium complexes, (RC, RHf)-2 and (SC, SHf)-3, have been obtained in enantio- and diastereomerically pure form. Upon activation with the borate co-initiator, [PhNHMe2][B(C6F5)4] (B1), 2 and 3 can serve as pre-initiators for the enantioselective living coordinative polymerization (LCP) and living coordinative chain transfer polymerization (LCCTP) of 1,5-hexadiene to provide optically active poly (methylene-1,3-cyclopentane) (PMCP) and end-group-functionalized PMCP (x-PMCP) in scalable quantities, respectively. 13C NMR stereochemical microstructural analyses reveal the role of ligand directing effects for the two-step propagation mechanism of 1,2-migratory insertion/ring-closing cyclization and structure/property relationships for these new PMCP and x-PMCP materials.more » « less
-
Photoredox catalysis driven by visible light has improved chemical synthesis by enabling milder reaction conditions and unlocking distinct reaction mechanisms. Despite the transformative impact, visible-light photoredox catalysis remains constrained by the thermodynamic limits of photon energy and inefficiencies arising from unproductive back electron transfer, both of which become particularly pronounced in thermodynamically demanding reactions. In this work, we introduce an organic photoredox catalyst system that overcomes these obstacles to drive chemical transformations that require super-reducing capabilities. This advancement is accomplished by coupling the energy of two photons into a single chemical reduction, whereas inefficiencies from back electron transfer are mitigated through a distinct proton-coupled electron transfer mechanism embedded in the catalyst design. The super-reducing capabilities of this organic catalyst system are demonstrated through efficient application in a broad scope of challenging arene reductions.more » « less
An official website of the United States government
