skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: To Transfer or Not to Transfer an Electron: Anionic Metal Centers Reveal Dual Functionality for Polymerization Reactions
Catalysts with anionic metal centers have recently been proposed to enhance the performance of various chemical processes. Here, we focus on the reactivity of Co(CO)4− for the polymerization of aziridine and carbon monoxide to form polypeptoids, motivated by earlier experimental studies. We used multi-reference and density functional theory methods to investigate possible reaction mechanisms and provide insights into the role of the negatively charged cobalt center. Two different reaction paths were identified. In the first path, Co− acts as a nucleophile, donating an electron pair to the reaction substrate, while in the second path, it performs a single electron transfer to the substrate, initiating radical polymerization. The difference in the activation barriers for the two key steps is small and falls within the accuracy of our calculations. As suggested in the literature, solvent effects can play a primary role in determining the outcomes of such reactions. Future investigations will involve different metals or ligands and will investigate the effects of these two reaction paths on other chemical transformations.  more » « less
Award ID(s):
1940456
PAR ID:
10636404
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Molecules
Volume:
30
Issue:
7
ISSN:
1420-3049
Page Range / eLocation ID:
1570
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the rapidly growing interest in exploiting millimeter and terahertz waves for wireless data transfer, the role of reflected non-line-of-sight (NLOS) paths in wireless networking is one of the least explored questions. In this paper, we investigate the idea of harnessing these specular NLOS paths for communication in directional networks at frequencies above 100 GHz. We explore several illustrative transmitter architectures, namely, a conventional substrate-lens dipole antenna and a leaky-wave antenna. We investigate how these high-gain directional antennas offer both new challenges and new opportunities for exploiting NLOS paths. Our results demonstrate the sensitivity to antenna alignment, power spectrum variations, and the disparity in supported bandwidth of various line-of-sight (LOS) and reflected path configurations. We show that NLOS paths can, under certain circumstances, offer even higher data rates than the conventional LOS path. This result illustrates the unique opportunities that distinguish THz wireless systems from those that operate at lower frequencies. 
    more » « less
  2. Spatial atomic layer deposition (SALD) is a powerful thin-film deposition technique to control surfaces and interfaces at the nanoscale. To further develop SALD technology, there is need to deepen our understanding of the effects that process parameters have on the deposited film uniformity. In this study, a 3D computational model that incorporates laminar-flow fluid mechanics and transport of diluted species is developed to provide insight into the velocity streamlines and partial-pressure distributions within the process region of a close-proximity atmospheric-pressure spatial atomic layer deposition (AP-SALD) system. The outputs of this transport model are used as the inputs to a surface reaction model that simulates the self-limiting chemical reactions. These coupled models allow for prediction of the film thickness profiles as they evolve in time, based on a relative depositor/substrate motion path. Experimental validation and model parameterization are performed using a mechatronic AP-SALD system, which enable the direct comparison of the simulated and experimentally measured geometry of deposited TiO2 films. Characteristic features in the film geometry are identified, and the model is used to reveal their physical and chemical origins. The influence of custom motion paths on the film geometry is also experimentally and computationally investigated. In the future, this digital twin will allow for the capability to rapidly simulate and predict SALD behavior, enabling a quantitative evaluation of the manufacturing trade-offs between film quality, throughput, cost, and sustainability for close-proximity AP-SALD systems. 
    more » « less
  3. The new chiral and configurationally stable cyclopentadienyl amidinate (CPAM) hafnium complexes, (RC, RHf)-2 and (SC, SHf)-3, have been obtained in enantio- and diastereomerically pure form. Upon activation with the borate co-initiator, [PhNHMe2][B(C6F5)4] (B1), 2 and 3 can serve as pre-initiators for the enantioselective living coordinative polymerization (LCP) and living coordinative chain transfer polymerization (LCCTP) of 1,5-hexadiene to provide optically active poly (methylene-1,3-cyclopentane) (PMCP) and end-group-functionalized PMCP (x-PMCP) in scalable quantities, respectively. 13C NMR stereochemical microstructural analyses reveal the role of ligand directing effects for the two-step propagation mechanism of 1,2-migratory insertion/ring-closing cyclization and structure/property relationships for these new PMCP and x-PMCP materials. 
    more » « less
  4. Photoredox catalysis driven by visible light has improved chemical synthesis by enabling milder reaction conditions and unlocking distinct reaction mechanisms. Despite the transformative impact, visible-light photoredox catalysis remains constrained by the thermodynamic limits of photon energy and inefficiencies arising from unproductive back electron transfer, both of which become particularly pronounced in thermodynamically demanding reactions. In this work, we introduce an organic photoredox catalyst system that overcomes these obstacles to drive chemical transformations that require super-reducing capabilities. This advancement is accomplished by coupling the energy of two photons into a single chemical reduction, whereas inefficiencies from back electron transfer are mitigated through a distinct proton-coupled electron transfer mechanism embedded in the catalyst design. The super-reducing capabilities of this organic catalyst system are demonstrated through efficient application in a broad scope of challenging arene reductions. 
    more » « less
  5. Abstract We report copper(II) and copper(III) trifluoromethyl complexes supported by a pyridinedicarboxamide ligand (L) as a platform for investigating the role of electron transfer in C(sp2)−H trifluoromethylation. While the copper(II) trifluoromethyl complex is unreactive towards (hetero)arenes, the formal copper(III) trifluoromethyl complex performs C(sp2)−H trifluoromethylation of a wide range of (hetero)arenes. Mechanistic studies using the copper(III) trifluoromethyl complex suggest that the mechanism of arene trifluoromethylation is substrate‐dependent. When the thermodynamic driving force for electron transfer is high, the reaction proceeds through a previously unidentified single electron transfer (SET) mechanism, where an initial electron transfer occurs between the substrate and oxidant prior to CF3group transfer. Otherwise, a CF3radical release/electrophilic aromatic substitution (SEAr) mechanism is followed. These studies provide valuable insights into the role of strong oxidants and potential mechanistic dichotomy in Cu‐mediated C(sp2)−H trifluoromethylation. 
    more » « less