skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Line-of-sight and non-line-of-sight links for dispersive terahertz wireless networks
Despite the rapidly growing interest in exploiting millimeter and terahertz waves for wireless data transfer, the role of reflected non-line-of-sight (NLOS) paths in wireless networking is one of the least explored questions. In this paper, we investigate the idea of harnessing these specular NLOS paths for communication in directional networks at frequencies above 100 GHz. We explore several illustrative transmitter architectures, namely, a conventional substrate-lens dipole antenna and a leaky-wave antenna. We investigate how these high-gain directional antennas offer both new challenges and new opportunities for exploiting NLOS paths. Our results demonstrate the sensitivity to antenna alignment, power spectrum variations, and the disparity in supported bandwidth of various line-of-sight (LOS) and reflected path configurations. We show that NLOS paths can, under certain circumstances, offer even higher data rates than the conventional LOS path. This result illustrates the unique opportunities that distinguish THz wireless systems from those that operate at lower frequencies.  more » « less
Award ID(s):
1954780 1955075 1923782 1824529
PAR ID:
10594240
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Photonics
Volume:
6
Issue:
4
ISSN:
2378-0967
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the propagation losses in terahertz (THz) non-line-of-sight (NLoS) imaging and compare the performance to the optical counterpart. NLoS imaging exploits the multiple reflections of electromagnetic waves from surrounding surfaces to reconstruct the geometry and location of hidden objects. THz and visible/infrared radiations are attractive for NLoS imaging due to the short wavelengths and practical apertures that can support this non-conventional imaging. However, the scattering mechanisms vary significantly and determine the quality of the reconstructed images. This work compares for the first time the free-space path loss and rough surface scattering losses of a simple THz and optical NLoS imaging topology. Because specular reflections are dominant in THz scattering while optical systems suffer from strong diffuse scattering, THz NLoS imaging systems can receive considerably stronger backscattered signals. 
    more » « less
  2. Massive multi-antenna millimeter wave (mmWave) and terahertz wireless systems promise high-bandwidth communication to multiple user equipments in the same time-frequency resource. The high path loss of wave propagation at such frequencies and the fine-grained nature of beamforming with massive antenna arrays necessitates accurate channel estimation to fully exploit the advantages of such systems. In this paper, we propose BEAmspace CHannel EStimation (BEACHES), a low-complexity channel estimation algorithm for multi-antenna mmWave systems and beyond. BEACHES leverages the fact that wave propagation at high frequencies is directional, which enables us to denoise the (approximately) sparse channel state information in the beamspace domain. To avoid tedious parameter selection, BEACHES includes a computationally-efficient tuning stage that provably minimizes the mean-square error of the channel estimate in the large-antenna limit. To demonstrate the efficacy of BEACHES, we provide simulation results for line-of-sight (LoS) and non-LoS mmWave channel models. 
    more » « less
  3. The study of non-line-of-sight (NLOS) imaging is growing due to its many potential applications, including rescue operations and pedestrian detection by self-driving cars. However, implementing NLOS imaging on a moving camera remains an open area of research. Existing NLOS imaging methods rely on time-resolved detectors and laser configurations that require precise optical alignment, making it difficult to deploy them in dynamic environments. This work proposes a data-driven approach to NLOS imaging, PathFinder, that can be used with a standard RGB camera mounted on a small, power-constrained mobile robot, such as an aerial drone. Our experimental pipeline is designed to accurately estimate the 2D trajectory of a person who moves in a Manhattan-world environment while remaining hidden from the camera’s fieldof- view. We introduce a novel approach to process a sequence of dynamic successive frames in a line-of-sight (LOS) video using an attention-based neural network that performs inference in real-time. The method also includes a preprocessing selection metric that analyzes images from a moving camera which contain multiple vertical planar surfaces, such as walls and building facades, and extracts planes that return maximum NLOS information. We validate the approach on in-the-wild scenes using a drone for video capture, thus demonstrating low-cost NLOS imaging in dynamic capture environments. 
    more » « less
  4. Communication at the terahertz band is increasingly seen as vital for future short-range very high datarate channels. However, these channels suffer from significant environmental impairments and, as a result, providing coverage in indoor settings requires the use of directional line of sight (LoS) paths to visible users and reflected paths, using smooth metal reflectors, for users in the shadow of an obstruction. Previous work has shown that these types of reflected paths display similar characteristics to LoS paths and we call them R-LoS (reflected LoS). MIMO for LoS and R-LoS channels is feasible at terahertz frequencies and delivers very high capacity at some distances. Unfortunately, channel capacity varies greatly with small changes in distance (the channel matrix fluctuates between full rank and rank 1) which is undesirable for communication systems. In this paper, we utilize diffusive reflectors to create multiple reflections such that the MIMO channel capacity for R-LoS is better behaved. We conduct experiments at 410 GHz for reflections from different artificially created diffuse surfaces. We use measurements to estimate channel capacity for 2×2 MIMO when the only path is the diffuse reflected one. We show that by creating multiple controlled reflections, it is possible to achieve relatively stable capacity up to 13 - 16 bits/sec/Hz at varying distances. We also analyze the phase of the received signals and the beam profile in detail. Overall, our results indicate that by utilizing artificially created reflections, we can maintain a stable MIMO channel at high capacity. 
    more » « less
  5. Abstract—This letter provides a comparison of indoor radio propagation measurements and corresponding channel statistics at 28, 73, and 140 GHz, based on extensive measurements from 2014-2020 in an indoor office environment. Side-by-side comparisons of propagation characteristics (e.g., large-scale path loss and multipath time dispersion) across a wide range of frequencies from the low millimeter wave band of 28 GHz to the sub-THz band of 140 GHz illustrate the key similarities and differences in indoor wireless channels. The measurements and models show remarkably similar path loss exponents over frequencies in both line-of-sight (LOS) and non-LOS (NLOS) scenarios, when using a one meter free space reference distance, while the multipath time dispersion becomes smaller at higher frequencies. The 3GPP indoor channel model overestimates the large-scale path loss and has unrealistic large numbers of clusters and multipath components per cluster compared to the measured channel statistics in this letter. Index Terms—mmWave, THz, channel models, multipath time dispersion, 5G, 6G, large-scale path loss, 3GPP InH. 
    more » « less