skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Between a Rock and a Soft Place: Biomass δ 15 N Values of Yellowstone Hot Spring Microbial Communities and Their Potential for Preservation in the Rock Record
Abstract Nitrogen isotope (δ15N) values in ancient rocks have been used to interpret the presence of nitrogen metabolisms and fixed N availability across the Archean and Paleoproterozoic eons. However, how δ15N signals produced by nitrogen metabolisms of microbial communities, the impact of the geochemical environments they live in on those signals, and the fidelity of those signals through preservation in the rock record have not been fully constrained and validated. Thus, it is imperative to study modern microbial systems to test the validity of using δ15N signals produced by microbial communities to interpret what geochemical environments and nitrogen metabolisms influenced the production of those signals. Hydrothermal systems are an ideal place to examine the biotic and abiotic factors that impact δ15N signals—physical processes generate geochemical environments with wide ranges of fixed N availability and the physicochemical environments exclude multicellular eukaryotic organisms. Previous work has demonstrated the presence of nitrogen fixation genes in microbial communities across a range of temperature (16–89°C) and pH (1.9–9.8) gradients. Here, we test the validity and fidelity of using microbial community δ15N signals as indicators of geochemical environment and nitrogen metabolisms (specifically, biological nitrogen fixation) present in eight hydrothermal systems across Yellowstone National Park. Our results suggest that δ15N values measured in the ancient rock record can provide information about the N cycling and prevailing environmental conditions during deposition, but only if viewed within appropriate context.  more » « less
Award ID(s):
1939303
PAR ID:
10636416
Author(s) / Creator(s):
;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
130
Issue:
8
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The spatial distribution of marine di-nitrogen (N2) fixation informs our understanding of the sensitivities of this process as well as the potential for this new nitrogen (N) source to drive export production, influencing the global carbon (C) cycle and climate. Using geochemically-derived δ15N budgets, we quantified rates of N2fixation and its importance for supporting export production at stations sampled near the southwest Pacific Tonga-Kermadec Arc. Recent observations indicate that shallow (<300 m) hydrothermal vents located along the arc provide significant dissolved iron to the euphotic zone, stimulating N2fixation. Here we compare measurements of water column δ15NNO3+NO2with sinking particulate δ15N collected by short-term sediment traps deployed at 170 m and 270 m at stations in close proximity to subsurface hydrothermal activity, and the δ15N of N2fixation. Results from the δ15N budgets yield high geochemically-based N2fixation rates (282 to 638 µmol N m-2d-1) at stations impacted by hydrothermal activity, supporting 64 to 92% of export production in late spring. These results are consistent with contemporaneous15N2uptake rate estimates and molecular work describing highTrichodesmiumspp. and other diazotroph abundances associated with elevated N2fixation rates. Further, the δ15N of sinking particulate N collected at 1000 m over an annual cycle revealed sinking fluxes peaked in the summer and coincided with the lowest δ15N, while lower winter sinking fluxes had the highest δ15N, indicating isotopically distinct N sources supporting export seasonally, and aligning with observations from most other δ15N budgets in oligotrophic regions. Consequently, the significant regional N2fixation input to the late spring/summer Western Tropical South Pacific results in the accumulation of low-δ15NNO3+NO2in the upper thermocline that works to lower the elevated δ15NNO3+NO2generated in the oxygen deficient zones in the Eastern Tropical South Pacific. 
    more » « less
  2. Abstract Dinitrogen (N2) fixation is an important source of biologically reactive nitrogen (N) to the global ocean. The magnitude of this flux, however, remains uncertain, in part because N2fixation rates have been estimated following divergent protocols and because associated levels of uncertainty are seldom reported—confounding comparison and extrapolation of rate measurements. A growing number of reports of relatively low but potentially significant rates of N2fixation in regions such as oxygen minimum zones, the mesopelagic water column of the tropical and subtropical oceans, and polar waters further highlights the need for standardized methodological protocols for measurements of N2fixation rates and for calculations of detection limits and propagated error terms. To this end, we examine current protocols of the15N2tracer method used for estimating diazotrophic rates, present results of experiments testing the validity of specific practices, and describe established metrics for reporting detection limits. We put forth a set of recommendations for best practices to estimate N2fixation rates using15N2tracer, with the goal of fostering transparency in reporting sources of uncertainty in estimates, and to render N2fixation rate estimates intercomparable among studies. 
    more » « less
  3. Summary Nitrogen (N2)‐fixing moss microbial communities play key roles in nitrogen cycling of boreal forests. Forest type and leaf litter inputs regulate moss abundance, but how they control moss microbiomes and N2‐fixation remains understudied. We examined the impacts of forest type and broadleaf litter on microbial community composition and N2‐fixation rates ofHylocomium splendensandPleurozium schreberi.We conducted a moss transplant and leaf litter manipulation experiment at three sites with paired paper birch (Betula neoalaskana) and black spruce (Picea mariana) stands in Alaska. We characterized bacterial communities using marker gene sequencing, determined N2‐fixation rates using stable isotopes (15N2) and measured environmental covariates.Mosses native to and transplanted into spruce stands supported generally higher N2‐fixation and distinct microbial communities compared to similar treatments in birch stands. High leaf litter inputs shifted microbial community composition for both moss species and reduced N2‐fixation rates forH. splendens, which had the highest rates. N2‐fixation was positively associated with several bacterial taxa, including cyanobacteria.The moss microbiome and environmental conditions controlled N2‐fixation at the stand and transplant scales. Predicted shifts from spruce‐ to deciduous‐dominated stands will interact with the relative abundances of mosses supporting different microbiomes and N2‐fixation rates, which could affect stand‐level N inputs. 
    more » « less
  4. Abstract Sedimentary nitrogen isotope (as δ15N) records from the Southern Ocean provide critical constraints on surface nutrient consumption in the past and the role of Southern Ocean biophysical changes in setting atmosphericpCO2. We present a field assessment of how surface nitrate consumption is reflected in δ15N values of total nitrogen and diatom‐bound nitrogen pools of particles and sediments across the Southern Ocean along 170°W during late austral summer. Mixed layer nitrate δ15N values increase northwards associated with greater nitrate drawdown. Particles and sediments are expected to follow this trend. Contrary to expectations, surface ocean particle total nitrogen and diatom‐bound δ15N values decreased northward during the late summer, likely due to recycling of nitrogen and the assimilation of regenerated ammonium, as well as nitrate. The relationship between δ15N values of the total nitrogen and diatom‐bound pools remains relatively constant across this Southern Ocean transect, suggesting that the isotopic composition of these two surface ocean nitrogen pools are largely set by the δ15N value(s) of the assimilated nutrient(s). Surface sediment δ15N values do increase away from the region of maximum biogenic silica deposition, suggesting that the recycled nitrogen isotopic signal observed in late summer particles may not significantly impact the sedimentary record. However, the enrichment in δ15N values of the diatom‐bound pool is greater than what is expected from progressive utilization of the surface nitrate alone and not yet explained. 
    more » « less
  5. Abstract The eastern tropical North Pacific oxygen deficient zone (ETNP‐ODZ) exhibits a distinct physical and biological environment compared to other oxygenated water columns, leading to a unique scenario of particulate organic matter (POM) production and vertical transport. To elucidate these biological pump processes, we present the first comparison of δ15N values of nitrate, phenylalanine (Phe), and glutamic acid (Glu) within two distinct size fractions of particles collected along a productivity gradient in the ETNP‐ODZ. Low δ15NPheand δ15NGluvalues in both particle pools at sites with prominent secondary chlorophyll maximum (SCM), compared to the ambient δ15N‐NO3, suggest the presence of recycled N‐utilizing primary producers distinct from those at the primary chlorophyll maximum and their contribution to export. We observed reduced15N enrichment of Phe in small particles and a narrower δ15NPhedisparity between the two particle size fractions compared to the results from oxic waters, likely due to slower heterotrophic microbial degradation of small particles. Unique δ15NPheand δ15NGlusignatures of particles were found at the lower oxycline, potentially attributable to chemoautotrophic production and zooplankton mediation. These findings underscore the need for further investigations targeting particles generated at the SCM, their subsequent alteration by zooplankton, and the new production by chemoautotrophs. This will allow for a better evaluation of the efficiency of the biological pump in the globally expanding ODZs under contemporary climate change. 
    more » « less