skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 8, 2026

Title: Kernel Expansions for High-Dimensional Mean-Field Control with Non-local Interactions
Mean-field control (MFC) problems aim to find the optimal policy to control massive populations of interacting agents. These problems are crucial in areas such as economics, physics, and biology. We consider the nonlocal setting, where the interactions between agents are governed by a suitable kernel. For N agents, the interaction cost has O(N2) complexity, which can be prohibitively slow to evaluate and differentiate when N is large. To this end, we propose an efficient primal-dual algorithm that utilizes basis expansions of the kernels. The basis expansions reduce the cost of computing the interactions, while the primal-dual methodology decouples the agents at the expense of solving for a moderate number of dual variables. We also demonstrate that our approach can further be structured in a multi-resolution manner, where we estimate optimal dual variables using a moderate N and solve decoupled trajectory optimization problems for large N. We illustrate the effectiveness of our method on an optimal control of 5000 interacting quadrotors.  more » « less
Award ID(s):
2110745
PAR ID:
10636470
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proceedings of the American Control Conference
ISSN:
2378-5861
ISBN:
979-8-3315-6937-2
Page Range / eLocation ID:
4164 to 4171
Format(s):
Medium: X
Location:
Denver, CO, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate reinforcement learning for mean field control problems in discrete time, which can be viewed as Markov decision processes for a large number of exchangeable agents interacting in a mean field manner. Such problems arise, for instance when a large number of robots communicate through a central unit dispatching the optimal policy computed by minimizing the overall social cost. An approximate solution is obtained by learning the optimal policy of a generic agent interacting with the statistical distribution of the states of the other agents. We prove rigorously the convergence of exact and model-free policy gradient methods in a mean-field linear-quadratic setting. We also provide graphical evidence of the convergence based on implementations of our algorithms. 
    more » « less
  2. We consider a class of multi-agent cooperative consensus optimization problems with local nonlinear convex constraints where only those agents connected by an edge can directly communicate, hence, the optimal consensus decision lies in the intersection of these private sets. We develop an asynchronous distributed accelerated primal-dual algorithm to solve the considered problem. The proposed scheme is the first asynchronous method with an optimal convergence guarantee for this class of problems, to the best of our knowledge. In particular, we provide an optimal convergence rate of $$\mathcal O(1/K)$$ for suboptimality, infeasibility, and consensus violation. 
    more » « less
  3. We study a first-order primal-dual subgradient method to optimize risk-constrained risk-penalized optimization problems, where risk is modeled via the popular conditional value at risk (CVaR) measure. The algorithm processes independent and identically distributed samples from the underlying uncertainty in an online fashion and produces an η/√K-approximately feasible and η/√K-approximately optimal point within K iterations with constant step-size, where η increases with tunable risk-parameters of CVaR. We find optimized step sizes using our bounds and precisely characterize the computational cost of risk aversion as revealed by the growth in η. Our proposed algorithm makes a simple modification to a typical primal-dual stochastic subgradient algorithm. With this mild change, our analysis surprisingly obviates the need to impose a priori bounds or complex adaptive bounding schemes for dual variables to execute the algorithm as assumed in many prior works. We also draw interesting parallels in sample complexity with that for chance-constrained programs derived in the literature with a very different solution architecture. 
    more » « less
  4. We consider an in-network optimal resource allocation problem in which a group of agents interacting over a connected graph want to meet a demand while minimizing their collective cost. The contribution of this paper is to design a distributed continuous-time algorithm for this problem inspired by a recently developed first-order transformed primal-dual method. The solution applies to cluster-based setting where each agent may have a set of subagents, and its local cost is the sum of the cost of these subagents. The proposed algorithm guarantees an exponential convergence for strongly convex costs and asymptotic convergence for convex costs. Exponential convergence when the local cost functions are strongly convex is achieved even when the local gradients are only locally Lipschitz. For convex local cost functions, our algorithm guarantees asymptotic convergence to a point in the minimizer set. Through numerical examples, we show that our proposed algorithm delivers a faster convergence compared to existing distributed resource allocation algorithms. 
    more » « less
  5. We consider a class of convex decentralized consensus optimization problems over connected multi-agent networks. Each agent in the network holds its local objective function privately, and can only communicate with its directly connected agents during the computation to find the minimizer of the sum of all objective functions. We propose a randomized incremental primal-dual method to solve this problem, where the dual variable over the network in each iteration is only updated at a randomly selected node, whereas the dual variables elsewhere remain the same as in the previous iteration. Thus, the communication only occurs in the neighborhood of the selected node in each iteration and hence can greatly reduce the chance of communication delay and failure in the standard fully synchronized consensus algorithms. We provide comprehensive convergence analysis including convergence rates of the primal residual and consensus error of the proposed algorithm, and conduct numerical experiments to show its performance using both uniform sampling and important sampling as node selection strategy. 
    more » « less