Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mean-field control (MFC) problems aim to find the optimal policy to control massive populations of interacting agents. These problems are crucial in areas such as economics, physics, and biology. We consider the nonlocal setting, where the interactions between agents are governed by a suitable kernel. For N agents, the interaction cost has O(N2) complexity, which can be prohibitively slow to evaluate and differentiate when N is large. To this end, we propose an efficient primal-dual algorithm that utilizes basis expansions of the kernels. The basis expansions reduce the cost of computing the interactions, while the primal-dual methodology decouples the agents at the expense of solving for a moderate number of dual variables. We also demonstrate that our approach can further be structured in a multi-resolution manner, where we estimate optimal dual variables using a moderate N and solve decoupled trajectory optimization problems for large N. We illustrate the effectiveness of our method on an optimal control of 5000 interacting quadrotors.more » « lessFree, publicly-accessible full text available July 8, 2026
-
Control Barrier Functions (CBFs) are an effective methodology to ensure safety and performative efficacy in real-time control applications such as power systems, resource allocation, autonomous vehicles, robotics, etc. This approach ensures safety independently of the high-level tasks that may have been pre-planned off-line. For example, CBFs can be used to guarantee that a vehicle will remain in its lane. However, when the number of agents is large, computation of CBFs can suffer from the curse of dimensionality in the multi-agent setting. In this work, we present Mean-field Control Barrier Functions (MF-CBFs), which extends the CBF framework to the mean-field (or swarm control) setting. The core idea is to model a population of agents as probability measures in the state space and build corresponding control barrier functions. Similar to traditional CBFs, we derive safety constraints on the (distributed) controls but now relying on the differential calculus in the space of probability measures.more » « lessFree, publicly-accessible full text available July 8, 2026
-
We study approximations to the Moreau envelope—and infimal convolutions more broadly—based on Laplace’s method, a classical tool in analysis which ties certain integrals to suprema of their integrands. We believe the connection between Laplace’s method and infimal convolutions is generally deserving of more attention in the study of optimization and partial differential equations, since it bears numerous potentially important applications, from proximal-type algorithms to Hamilton-Jacobi equations.more » « lessFree, publicly-accessible full text available March 1, 2026
-
The emergence of seemingly similar representations across tasks and neural architectures suggests that convergent properties may underlie sophisticated behavior. One form of representation that seems particularly fundamental to reasoning in many artificial (and perhaps natural) networks is the formation of world models, which decompose observed task structures into re-usable perceptual primitives and task-relevant relations. In this work, we show that auto-regressive transformers tasked with solving mazes learn to linearly represent the structure of mazes, and that the formation of these representations coincides with a sharp increase in generalization performance. Furthermore, we find preliminary evidence for Adjacency Heads which may play a role in computing valid paths through mazes.more » « less
An official website of the United States government

Full Text Available