Abstract The motion of bubbles near walls is ubiquitous for cleaning purposes in natural and industrial systems. Shear stress induced by bubbles on the surface is used to remove particles or bacteria adhering to the surface. In this study, we investigate the cleaning effect of bubbles on a surface coated with a protein soil solution with and without the presence of an acoustic wave transducer at a single frequency. In addition, we test different drying times for the coated surfaces before conducting the cleaning tests. Our results show that the best bubble cleaning effect occurs for the shortest drying time of the coating and an acoustic wave of 100 Hz.
more »
« less
Galloping Bubbles
Abstract Despite centuries of investigation, bubbles continue to unveil intriguing dynamics relevant to a multitude of practical applications, including industrial, biological, geophysical, and medical settings. Here we introduce bubbles that spontaneously start to ‘gallop’ along horizontal surfaces inside a vertically-vibrated fluid chamber, self-propelled by a resonant interaction between their shape oscillation modes. These active bubbles exhibit distinct trajectory regimes, including rectilinear, orbital, and run-and-tumble motions, which can be tuned dynamically via the external forcing. Through periodic body deformations, galloping bubbles swim leveraging inertial forces rather than vortex shedding, enabling them to maneuver even when viscous traction is not viable. The galloping symmetry breaking provides a robust self-propulsion mechanism, arising in bubbles whether separated from the wall by a liquid film or directly attached to it, and is captured by a minimal oscillator model, highlighting its universality. Through proof-of-concept demonstrations, we showcase the technological potential of the galloping locomotion for applications involving bubble generation and removal, transport and sorting, navigating complex fluid networks, and surface cleaning. The rich dynamics of galloping bubbles suggest exciting opportunities in heat transfer, microfluidic transport, probing and cleaning, bubble-based computing, soft robotics, and active matter.
more »
« less
- Award ID(s):
- 2321357
- PAR ID:
- 10636508
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Boiling is arguably Nature’s most effective thermal management mechanism that cools submersed matter through bubble-induced advective transport. Central to the boiling process is the development of bubbles. Connecting boiling physics with bubble dynamics is an important, yet daunting challenge because of the intrinsically complex and high dimensional of bubble dynamics. Here, we introduce a data-driven learning framework that correlates high-quality imaging on dynamic bubbles with associated boiling curves. The framework leverages cutting-edge deep learning models including convolutional neural networks and object detection algorithms to automatically extract both hierarchical and physics-based features. By training on these features, our model learns physical boiling laws that statistically describe the manner in which bubbles nucleate, coalesce, and depart under boiling conditions, enabling in situ boiling curve prediction with a mean error of 6%. Our framework offers an automated, learning-based, alternative to conventional boiling heat transfer metrology.more » « less
-
Nucleation and bubble dynamics on a heater surface contribute to high heat transfer rate in pool boiling. Introducing two-phase flow in narrow channels further improves heat transfer. Use of expanding taper microgap geometry further enhances heat transfer, and proper balancing of taper angles and flow lengths leads to self-sustained flow boiling in tapered microgap geometries. This paper focuses on understanding the underlying enhancement mechanism by studying the bubble behavior as they expand and accelerate in the direction of increased taper. The present study conducts a 2D simulation analysis of bubble growth in tapered microgaps with numerical simulations to identify the effect of the fluid properties and tapered angle in the bubble and fluid dynamics behavior. Ansys-Fluent is customized with user-defined-functions (UDFs) accounting for the interfacial heat and mass transport, including a sharp interface and direct calculation of mass transfer with temperature gradients. The study was conducted using air injection and boiling simulation from the conception to the departure of a bubble. The tapered angles were 5°, 10°, and 15°, with flowrates between 3 ml/min to 30 ml/min, 1 mm air inlet, and at 1 mm distance from the convergent end. The departure time of 10 subsequent bubbles was recorded to check the configuration with the quickest bubble removal. A critical flowrate and surface tension region was established for the escape direction of the bubble. In addition, the numerical simulation considered the tapered microgap with a nucleating bubble at atmospheric conditions with a wall superheats of 5 K. The results show that the bubble growing over the heated surface creates fluid circulations and interfacial conditions that suppress the thermal boundary layer leading to an increased local heat transfer coefficient within a range of 1 mm from the interface.more » « less
-
ABSTRACT An important characteristic of cosmic hydrogen reionization is the growth of ionized gas bubbles surrounding early luminous objects. Ionized bubble sizes are beginning to be probed using Lyman α emission from high-redshift galaxies, and will also be probed by upcoming 21 cm maps. We present results from a study of bubble sizes using the state-of-the-art thesan radiation-hydrodynamics simulation suite, which self-consistently models radiation transport and realistic galaxy formation. We employ the mean free path method and track the evolution of the effective ionized bubble size at each point (Reff) throughout the Epoch of Reionization. We show that there is a slow growth period for regions ionized early, but a rapid ‘flash ionization’ process for regions ionized later as they immediately enter a large, pre-existing bubble. We also find that bright sources are preferentially in larger bubbles, and find consistency with recent observational constraints at z ≳ 9, but tension with idealized Lyman α damping-wing models at z ≈ 7. We find that high-overdensity regions have larger characteristic bubble sizes, but the correlation decreases as reionization progresses, likely due to runaway formation of large percolated bubbles. Finally, we compare the redshift at which a region transitions from neutral to ionized (zreion) with the time it takes to reach a given bubble size and conclude that zreion is a reasonable local probe of small-scale bubble size statistics ($$R_\text{eff} \lesssim 1\, \rm {cMpc}$$). However, for larger bubbles, the correspondence between zreion and size statistics weakens due to the time delay between the onset of reionization and the expansion of large bubbles, particularly at high redshifts.more » « less
-
Abstract The purpose of this work is to develop an active self-cleaning system that removes contaminants from a solar module surface by means of an automatic, water-saving, and labor-free process. The output efficiency of a solar module can be degraded over time by dust accumulation on top of the cover glass, which is often referred to as “soiling”. This paper focuses on creating an active self-cleaning surface system using a combination of microsized features and mechanical vibration. The features, which are termed anisotropic ratchet conveyors (ARCs), consist of hydrophilic curved rungs on a hydrophobic background. Two different ARC systems have been designed and fabricated with self-assembled monolayer (SAM) silane and fluoropolymer thin film (Cytop). Fabrication processes were established to fabricate these two systems, including patterning Cytop without degrading the original Cytop hydrophobicity. Water droplet transport characteristics, including anisotropic driving force, droplet resonance mode, cleaning mechanisms, and system power consumption, were studied with the help of a high-speed camera and custom-made test benches. The droplet can be transported on the ARC surface at a speed of 27 mm/s and can clean a variety of dust particles, either water-soluble or insoluble. Optical transmission was measured to show that Cytop can improve transmittance by 2.5~3.5% across the entire visible wavelength range. Real-time demonstrations of droplet transport and surface cleaning were performed, in which the solar modules achieved a 23 percentage-point gain after cleaning.more » « less
An official website of the United States government

