skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parallelized Mechanical Stimulation of Neuronal Calcium Through Cell‐Internal Nanomagnetic Forces Provokes Lasting Shifts in the Network Activity State
Neurons differentiate mechanical stimuli force and rate to elicit unique functional responses, driving the need for further tools to generate various mechanical stimuli. Here, cell-internal nanomagnetic forces (iNMF) are introduced by manipulating internalized magnetic nanoparticles with an external magnetic field across cortical neuron networks in vitro. Under iNMF, cortical neurons exhibit calcium (Ca2+) influx, leading to modulation of activity observed through Ca2+ event rates. Inhibiting particle uptake or altering nanoparticle exposure time reduced the neuronal response to nanomagnetic forces, exposing the requirement of nanoparticle uptake to induce the Ca2+ response. In highly active cortical networks, iNMF robustly modulates synchronous network activity, which is lasting and repeatable. Using pharmacological blockers, it is shown that iNMF activates mechanosensitive ion channels to induce the Ca2+ influx. Then, in contrast to transient mechanically evoked neuronal activity, iNMF activates Ca2+-activated potassium (KCa) channels to stabilize the neuronal membrane potential and induce network activity shifts. The findings reveal the potential of magnetic nanoparticle-mediated mechanical stimulation to modulate neuronal circuit dynamics, providing insights into the biophysics of neuronal computation.  more » « less
Award ID(s):
1846271
PAR ID:
10636583
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Small
Volume:
21
Issue:
1
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Noninvasive manipulation of cell signaling is critical in basic neuroscience research and in developing therapies for neurological disorders and psychiatric conditions. Here, the wireless force‐induced stimulation of primary neuronal circuits through mechanotransduction mediated by magnetic microdiscs (MMDs) under applied low‐intensity and low‐frequency alternating magnetic fields (AMFs), is described. MMDs are fabricated by top‐down lithography techniques that allow for cost‐effective mass production of biocompatible MMDs with high saturation and zero magnetic magnetic moment at remanence. MMDs are utilized as transducers of AMFs into mechanical forces. When MMDs are exposed to primary rat neuronal circuits, their magneto‐mechanical actuation triggers the response of specific mechanosensitive ion channels expressed on the cell membranes activating ≈50% of hippocampal and ≈90% of cortical neurons subjected to the treatment. Mechanotransduction is confirmed by the inhibition of mechanosensitive transmembrane channels with Gd3+. Mechanotransduction mediated by MMDs cause no cytotoxic effect to neuronal cultures. This technology fulfills the requirements of cell‐type specificity and weak magnetic fields, two limiting factors in the development of noninvasive neuromodulation therapies and clinical equipment design. Moreover, high efficiency and long‐lasting stimulations are successfully achieved. This research represents a fundamental step forward for magneto‐mechanical control of neural activity using disc‐shaped micromaterials with tailored magnetic properties. 
    more » « less
  2. null (Ed.)
    Both experimenter-controlled stimuli and stimulus-independent variables impact cortical neural activity. A major hurdle to understanding neural representation is distinguishing between qualitatively different causes of the fluctuating population activity. We applied an unsupervised low-rank tensor decomposition analysis to the recorded population activity in the visual cortex of awake mice in response to repeated presentations of naturalistic visual stimuli. We found that neurons covaried largely independently of individual neuron stimulus response reliability and thus encoded both stimulus-driven and stimulus-independent variables. Importantly, a neuron’s response reliability and the neuronal coactivation patterns substantially reorganized for different external visual inputs. Analysis of recurrent balanced neural network models revealed that both the stimulus specificity and the mixed encoding of qualitatively different variables can arise from clustered external inputs. These results establish that coactive neurons with diverse response reliability mediate a mixed representation of stimulus-driven and stimulus-independent variables in the visual cortex. NEW & NOTEWORTHY V1 neurons covary largely independently of individual neuron’s response reliability. A single neuron’s response reliability imposes only a weak constraint on its encoding capabilities. Visual stimulus instructs a neuron’s reliability and coactivation pattern. Network models revealed using clustered external inputs. 
    more » « less
  3. Berry, Hugues (Ed.)
    Neural activity in the cortex is highly variable in response to repeated stimuli. Population recordings across the cortex demonstrate that the variability of neuronal responses is shared among large groups of neurons and concentrates in a low dimensional space. However, the source of the population-wide shared variability is unknown. In this work, we analyzed the dynamical regimes of spatially distributed networks of excitatory and inhibitory neurons. We found chaotic spatiotemporal dynamics in networks with similar excitatory and inhibitory projection widths, an anatomical feature of the cortex. The chaotic solutions contain broadband frequency power in rate variability and have distance-dependent and low-dimensional correlations, in agreement with experimental findings. In addition, rate chaos can be induced by globally correlated noisy inputs. These results suggest that spatiotemporal chaos in cortical networks can explain the shared variability observed in neuronal population responses. 
    more » « less
  4. Mechanosensory feedback of the internal reproductive state drives decisions about when and where to reproduce. For instance, stretch in the Drosophila reproductive tract produced by artificial distention or from accumulated eggs regulates the attraction to acetic acid to ensure optimal oviposition. How such mechanosensory feedback modulates neural circuits to coordinate reproductive behaviors is incompletely understood. We previously identified a stretch-dependent homeostat that regulates egg laying in Caenorhabditis elegans. Sterilized animals lacking eggs show reduced Ca2+ transient activity in the presynaptic HSN command motoneurons that drive egg-laying behavior, while animals forced to accumulate extra eggs show dramatically increased circuit activity that restores egg laying. Interestingly, genetic ablation or electrical silencing of the HSNs delays, but does not abolish, the onset of egg laying, with animals recovering vulval muscle Ca2+ transient activity upon egg accumulation. Using an acute gonad microinjection technique to mimic changes in pressure and stretch resulting from germline activity and egg accumulation, we find that injection rapidly stimulates Ca2+ activity in both neurons and muscles of the egg-laying circuit. Injection-induced vulval muscle Ca2+ activity requires L-type Ca2+ channels but is independent of presynaptic input. Conversely, injection-induced neural activity is disrupted in mutants lacking the vulval muscles, suggesting "bottom-up" feedback from muscles to neurons. Direct mechanical prodding activates the vulval muscles, suggesting that they are the proximal targets of the stretch-dependent stimulus. Our results show that egg-laying behavior in C. elegans is regulated by a stretch-dependent homeostat that scales postsynaptic muscle responses with egg accumulation in the uterus. 
    more » « less
  5. Kumar, Arvind (Ed.)
    Characterizing neuronal responses to natural stimuli remains a central goal in sensory neuroscience. In auditory cortical neurons, the stimulus selectivity of elicited spiking activity is summarized by a spectrotemporal receptive field (STRF) that relates neuronal responses to the stimulus spectrogram. Though effective in characterizing primary auditory cortical responses, STRFs of non-primary auditory neurons can be quite intricate, reflecting their mixed selectivity. The complexity of non-primary STRFs hence impedes understanding how acoustic stimulus representations are transformed along the auditory pathway. Here, we focus on the relationship between ferret primary auditory cortex (A1) and a secondary region, dorsal posterior ectosylvian gyrus (PEG). We propose estimating receptive fields in PEG with respect to a well-established high-dimensional computational model of primary-cortical stimulus representations. These “cortical receptive fields” (CortRF) are estimated greedily to identify the salient primary-cortical features modulating spiking responses and in turn related to corresponding spectrotemporal features. Hence, they provide biologically plausible hierarchical decompositions of STRFs in PEG. Such CortRF analysis was applied to PEG neuronal responses to speech and temporally orthogonal ripple combination (TORC) stimuli and, for comparison, to A1 neuronal responses. CortRFs of PEG neurons captured their selectivity to more complex spectrotemporal features than A1 neurons; moreover, CortRF models were more predictive of PEG (but not A1) responses to speech. Our results thus suggest that secondary-cortical stimulus representations can be computed as sparse combinations of primary-cortical features that facilitate encoding natural stimuli. Thus, by adding the primary-cortical representation, we can account for PEG single-unit responses to natural sounds better than bypassing it and considering as input the auditory spectrogram. These results confirm with explicit details the presumed hierarchical organization of the auditory cortex. 
    more » « less