With the increase in the number of privacy regulations, small development teams are forced to make privacy decisions on their own. In this paper, we conduct a mixed-method survey study, including statistical and qualitative analysis, to evaluate the privacy perceptions, practices, and knowledge of members involved in various phases of the Software Development Life Cycle (SDLC). Our survey includes 362 participants from 23 countries, encompassing roles such as product managers, developers, and testers. Our results show diverse definitions of privacy across SDLC roles, emphasizing the need for a holistic privacy approach throughout SDLC. We find that software teams, regardless of their region, are less familiar with privacy concepts (such as anonymization), relying on self-teaching and forums. Most participants are more familiar with GDPR and HIPAA than other regulations, with multijurisdictional compliance being their primary concern. Our results advocate the need for role-dependent solutions to address the privacy challenges, and we highlight research directions and educational takeaways to help improve privacy-aware SDLC.
more »
« less
This content will become publicly available on July 1, 2026
Evaluating a Data Fiduciary Standard for Privacy: Developer and End-user Perspectives
As concern over data privacy and existing privacy regulations grows, legal scholars have proposed alternative models for data privacy. This work explores the impact of one such model---the data fiduciary model, which would stipulate that data processors must use personal information only in ways that reflect the best interest of the data subject---through a pair of user studies. We first conduct an interview study with nine mobile app developers in which we explore whether, how, and why these developers believe their current data practices are consistent with the best interest of their users. We then conduct an online study with 390 users in which we survey participants about whether they consider the same data practices to be in their own best interests. We also ask both developers and users about their attitudes towards and their predictions about the impact of a data fiduciary law, and we conclude with recommendations about such an approach to future privacy regulations.
more »
« less
- Award ID(s):
- 2317115
- PAR ID:
- 10636654
- Publisher / Repository:
- PoPETS
- Date Published:
- Journal Name:
- Proceedings on Privacy Enhancing Technologies
- Volume:
- 2025
- Issue:
- 3
- ISSN:
- 2299-0984
- Page Range / eLocation ID:
- 590 to 607
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Data privacy, a critical human right, is gaining importance as new technologies are developed, and the old ones evolve. In mobile platforms such as Android, data privacy regulations require developers to communicate data access requests using privacy policy statements (PPS). This case study cross-examines the PPS in popular social media (SM) apps---Facebook and Twitter---for features of language ambiguity, sensitive data requests, and whether the statements tally with the data requests made in the Manifest file. Subsequently, we conduct a comparative analysis between the PPS of these two apps to examine trends that may constitute a threat to user data privacy.more » « less
-
The increasing societal concern for consumer information privacy has led to the enforcement of privacy regulations worldwide. In an effort to adhere to privacy regulations such as the General Data Protection Regulation (GDPR), many companies’ privacy policies have become increasingly lengthy and complex. In this study, we adopted the computational design science paradigm to design a novel privacy policy evolution analytics framework to help identify how companies change and present their privacy policies based on privacy regulations. The framework includes a self-attentive annotation system (SAAS) that automatically annotates paragraph-length segments in privacy policies to help stakeholders identify data practices of interest for further investigation. We rigorously evaluated SAAS against state-of-the-art machine learning (ML) and deep learning (DL)-based methods on a well-established privacy policy dataset, OPP-115. SAAS outperformed conventional ML and DL models in terms of F1-score by statistically significant margins. We demonstrate the proposed framework’s practical utility with an in-depth case study of GDPR’s impact on Amazon’s privacy policies. The case study results indicate that Amazon’s post-GDPR privacy policy potentially violates a fundamental principle of GDPR by causing consumers to exert more effort to find information about first-party data collection. Given the increasing importance of consumer information privacy, the proposed framework has important implications for regulators and companies. We discuss several design principles followed by the SAAS that can help guide future design science-based e-commerce, health, and privacy research.more » « less
-
Privacy policies are crucial for informing users about data practices, yet their length and complexity often deter users from reading them. In this paper, we propose an automated approach to identify and visualize data practices within privacy policies at different levels of detail. Leveraging crowd-sourced annotations from the ToS;DR platform, we experiment with various methods to match policy excerpts with predefined data practice descriptions. We further conduct a case study to evaluate our approach on a real-world policy, demonstrating its effectiveness in simplifying complex policies. Experiments show that our approach accurately matches data practice descriptions with policy excerpts, facilitating the presentation of simplified privacy information to users.more » « less
-
Abstract The EU General Data Protection Regulation (GDPR) is one of the most demanding and comprehensive privacy regulations of all time. A year after it went into effect, we study its impact on the landscape of privacy policies online. We conduct the first longitudinal, in-depth, and at-scale assessment of privacy policies before and after the GDPR. We gauge the complete consumption cycle of these policies, from the first user impressions until the compliance assessment. We create a diverse corpus of two sets of 6,278 unique English-language privacy policies from inside and outside the EU, covering their pre-GDPR and the post-GDPR versions. The results of our tests and analyses suggest that the GDPR has been a catalyst for a major overhaul of the privacy policies inside and outside the EU. This overhaul of the policies, manifesting in extensive textual changes, especially for the EU-based websites, comes at mixed benefits to the users. While the privacy policies have become considerably longer, our user study with 470 participants on Amazon MTurk indicates a significant improvement in the visual representation of privacy policies from the users’ perspective for the EU websites. We further develop a new workflow for the automated assessment of requirements in privacy policies. Using this workflow, we show that privacy policies cover more data practices and are more consistent with seven compliance requirements post the GDPR. We also assess how transparent the organizations are with their privacy practices by performing specificity analysis. In this analysis, we find evidence for positive changes triggered by the GDPR, with the specificity level improving on average. Still, we find the landscape of privacy policies to be in a transitional phase; many policies still do not meet several key GDPR requirements or their improved coverage comes with reduced specificity.more » « less
An official website of the United States government
