skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 21, 2026

Title: Parametric sensitivity analysis for models of reaction networks within interacting compartments
Models of reaction networks within interacting compartments (RNIC) are a generalization of stochastic reaction networks. It is most natural to think of the interacting compartments as “cells” that can appear, degrade, split, and even merge, with each cell containing an evolving copy of the underlying stochastic reaction network. Such models have a number of parameters, including those associated with the internal chemical model and those associated with the compartment interactions, and it is natural to want efficient computational methods for the numerical estimation of sensitivities of model statistics with respect to these parameters. Motivated by the extensive work on computational methods for parametric sensitivity analysis in the context of stochastic reaction networks over the past few decades, we provide a number of methods in the basic RNIC setting. Provided methods include the (unbiased) Girsanov transformation method (also called the likelihood ratio method) and a number of coupling methods for the implementation of finite differences, each motivated by methods from previous work related to stochastic reaction networks. We provide several numerical examples comparing the various methods in the new setting. We find that the relative performance of each method is in line with its analog in the “standard” stochastic reaction network setting. We have made all the MATLAB codes used to implement the various methods freely available for download.  more » « less
Award ID(s):
2051498
PAR ID:
10636661
Author(s) / Creator(s):
;
Publisher / Repository:
AIP
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
162
Issue:
15
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stochastic reaction networks, which are usually modeled as continuous-time Markov chains on $$\ZZ^d_{\ge 0}$$, and simulated via a version of the ``Gillespie algorithm,'' have proven to be a useful tool for the understanding of processes, chemical and otherwise, in homogeneous environments. There are multiple avenues for generalizing away from the assumption that the environment is homogeneous, with the proper modeling choice dependent upon the context of the problem being considered. One such generalization was recently introduced in \cite{Duso_Zechner_2020}, where the proposed model includes a varying number of interacting compartments, or cells, each of which contains an evolving copy of the stochastic reaction system. The novelty of the model is that these compartments also interact via the merging of two compartments (including their contents), the splitting of one compartment into two, and the appearance and destruction of compartments. In this paper we begin a systematic exploration of the mathematical properties of this model. We (i) obtain basic/foundational results pertaining to explosivity, transience, recurrence, and positive recurrence of the model, (ii) explore a number of examples demonstrating some possible non-intuitive behaviors of the model, and (iii) identify the limiting distribution of the model in a special case that generalizes three formulas from an example in \cite{Duso_Zechner_2020}. 
    more » « less
  2. Abstract Continuous-time Markov chains are frequently used as stochastic models for chemical reaction networks, especially in the growing field of systems biology. A fundamental problem for these Stochastic Chemical Reaction Networks (SCRNs) is to understand the dependence of the stochastic behavior of these systems on the chemical reaction rate parameters. Towards solving this problem, in this paper we develop theoretical tools called comparison theorems that provide stochastic ordering results for SCRNs. These theorems give sufficient conditions for monotonic dependence on parameters in these network models, which allow us to obtain, under suitable conditions, information about transient and steady-state behavior. These theorems exploit structural properties of SCRNs, beyond those of general continuous-time Markov chains. Furthermore, we derive two theorems to compare stationary distributions and mean first passage times for SCRNs with different parameter values, or with the same parameters and different initial conditions. These tools are developed for SCRNs taking values in a generic (finite or countably infinite) state space and can also be applied for non-mass-action kinetics models. When propensity functions are bounded, our method of proof gives an explicit method for coupling two comparable SCRNs, which can be used to simultaneously simulate their sample paths in a comparable manner. We illustrate our results with applications to models of enzymatic kinetics and epigenetic regulation by chromatin modifications. 
    more » « less
  3. null (Ed.)
    Chemical reaction networks describe interactions between biochemical species. Once an underlying reaction network is given for a biochemical system, the system dynamics can be modelled with various mathematical frameworks such as continuous-time Markov processes. In this manuscript, the identifiability of the underlying network structure with a given stochastic system dynamics is studied. It is shown that some data types related to the associated stochastic dynamics can uniquely identify the underlying network structure as well as the system parameters. The accuracy of the presented network inference is investigated when given dynamical data are obtained via stochastic simulations. 
    more » « less
  4. Abstract We propose a novel method for sampling and optimization tasks based on a stochastic interacting particle system. We explain how this method can be used for the following two goals: (i) generating approximate samples from a given target distribution and (ii) optimizing a given objective function. The approach is derivative‐free and affine invariant, and is therefore well‐suited for solving inverse problems defined by complex forward models: (i) allows generation of samples from the Bayesian posterior and (ii) allows determination of the maximum a posteriori estimator. We investigate the properties of the proposed family of methods in terms of various parameter choices, both analytically and by means of numerical simulations. The analysis and numerical simulation establish that the method has potential for general purpose optimization tasks over Euclidean space; contraction properties of the algorithm are established under suitable conditions, and computational experiments demonstrate wide basins of attraction for various specific problems. The analysis and experiments also demonstrate the potential for the sampling methodology in regimes in which the target distribution is unimodal and close to Gaussian; indeed we prove that the method recovers a Laplace approximation to the measure in certain parametric regimes and provide numerical evidence that this Laplace approximation attracts a large set of initial conditions in a number of examples. 
    more » « less
  5. Abstract A probabilistic approach is needed to address systems with uncertainties arising in natural processes and engineering applications. For computational convenience, however, the stochastic effects are often ignored. Thus, numerical integration routines for stochastic dynamical systems are rudimentary compared to those for the deterministic case. In this work, the authors present a method to carry out stochastic simulations by using methods developed for the deterministic case. Thereby, the well-developed numerical integration routines developed for deterministic systems become available for studies of stochastic systems. The convergence of the developed method is shown and the method's performance is demonstrated through illustrative examples. 
    more » « less