skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2051498

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 30, 2026
  2. Models of reaction networks within interacting compartments (RNIC) are a generalization of stochastic reaction networks. It is most natural to think of the interacting compartments as “cells” that can appear, degrade, split, and even merge, with each cell containing an evolving copy of the underlying stochastic reaction network. Such models have a number of parameters, including those associated with the internal chemical model and those associated with the compartment interactions, and it is natural to want efficient computational methods for the numerical estimation of sensitivities of model statistics with respect to these parameters. Motivated by the extensive work on computational methods for parametric sensitivity analysis in the context of stochastic reaction networks over the past few decades, we provide a number of methods in the basic RNIC setting. Provided methods include the (unbiased) Girsanov transformation method (also called the likelihood ratio method) and a number of coupling methods for the implementation of finite differences, each motivated by methods from previous work related to stochastic reaction networks. We provide several numerical examples comparing the various methods in the new setting. We find that the relative performance of each method is in line with its analog in the “standard” stochastic reaction network setting. We have made all the MATLAB codes used to implement the various methods freely available for download. 
    more » « less
    Free, publicly-accessible full text available April 21, 2026
  3. Free, publicly-accessible full text available February 1, 2026
  4. Biochemical covalent modification networks exhibit a remarkable suite of steady state and dynamical properties such as multistationarity, oscillations, ultrasensitivity and absolute concentration robustness. This paper focuses on conditions required for a network of this type to have a species with absolute concentration robustness. We find that the robustness in a substrate is endowed by its interaction with a bifunctional enzyme, which is an enzyme that has different roles when isolated versus when bound as a substrate-enzyme complex. When isolated, the bifunctional enzyme promotes production of more molecules of the robust species while when bound, the same enzyme facilitates degradation of the robust species. These dual actions produce robustness in the large class of covalent modification networks. For each network of this type, we find the network conditions for the presence of robustness, the species that has robustness, and its robustness value. The unified approach of simultaneously analyzing a large class of networks for a single property, i.e. absolute concentration robustness, reveals the underlying mechanism of the action of bifunctional enzyme while simultaneously providing a precise mathematical description of bifunctionality. 
    more » « less
  5. Stochastic reaction networks, which are usually modeled as continuous-time Markov chains on $$\ZZ^d_{\ge 0}$$, and simulated via a version of the ``Gillespie algorithm,'' have proven to be a useful tool for the understanding of processes, chemical and otherwise, in homogeneous environments. There are multiple avenues for generalizing away from the assumption that the environment is homogeneous, with the proper modeling choice dependent upon the context of the problem being considered. One such generalization was recently introduced in \cite{Duso_Zechner_2020}, where the proposed model includes a varying number of interacting compartments, or cells, each of which contains an evolving copy of the stochastic reaction system. The novelty of the model is that these compartments also interact via the merging of two compartments (including their contents), the splitting of one compartment into two, and the appearance and destruction of compartments. In this paper we begin a systematic exploration of the mathematical properties of this model. We (i) obtain basic/foundational results pertaining to explosivity, transience, recurrence, and positive recurrence of the model, (ii) explore a number of examples demonstrating some possible non-intuitive behaviors of the model, and (iii) identify the limiting distribution of the model in a special case that generalizes three formulas from an example in \cite{Duso_Zechner_2020}. 
    more » « less
  6. Abstract Reaction networks are commonly used within the mathematical biology and mathematical chemistry communities to model the dynamics of interacting species. These models differ from the typical graphs found in random graph theory since their vertices are constructed from elementary building blocks, i.e. the species. We consider these networks in an Erdös–Rényi framework and, under suitable assumptions, derive a threshold function for the network to have a deficiency of zero, which is a property of great interest in the reaction network community. Specifically, if the number of species is denoted by n and the edge probability by $$p_n$$ , then we prove that the probability of a random binary network being deficiency zero converges to 1 if $$p_n\ll r(n)$$ as $$n \to \infty$$ , and converges to 0 if $$p_n \gg r(n)$$ as $$n \to \infty$$ , where $$r(n)=\frac{1}{n^3}$$ . 
    more » « less
  7. The past few decades have seen robust research on questions regarding the existence, form, and properties of stationary distributions of stochastically modeled reaction networks. When a stochastic model admits a stationary distribution an important practical question is: what is the rate of convergence of the distribution of the process to the stationary distribution? With the exception of [1] pertaining to models whose state space is restricted to the non-negative integers, there has been a notable lack of results related to this rate of convergence in the reaction network literature. This paper begins the process of filling that hole in our understanding. In this paper, we characterize this rate of convergence, via the mixing times of the processes, for two classes of stochastically modeled reaction networks. Specifically, by applying a Foster-Lyapunov criteria we establish exponential ergodicity for two classes of reaction networks introduced in [2]. Moreover, we show that for one of the classes the convergence is uniform over the initial state. 
    more » « less