In this experimental research a transparent thermoplastic manufactured by the DOW Corporation and known as Surlyn is investigated for use as an interface material in fabrication of an all-glass pedestrian bridge. The bridge is modular in construction and fabricated from a series of interlocking hollow glass units (HGU) that are geometrically arranged to form a compression dominant structural system. Surlyn is used as a friction-based interface between neighbouring HGUs preventing direct glass-to-glass contact. An experimental program consisting of axial loading of short glass columns (SGC) sandwiched between Surlyn sheets is used to quantify the bearing capacity at which glass fracture occurs at the glass-Surlyn interface location. Applied load cases include 100,000 cycles of cyclic load followed by 12 hours of sustained load followed by monotonic load to cracking, and monotonic loading to cracking with no previous load history. Test results show that Surlyn functions as an effective interface material with glass fracture occurring at bearing stress levels in excess of the column-action capacity of an individual HGU. Furthermore, load cycling and creep loading had no effect on the glass fracture capacity. However, the load history had a nominal effect on Surlyn, increasing stiffness and reducing deformation. 
                        more » 
                        « less   
                    
                            
                            Predicting fracture in disordered network materials using the local intelligent stress threshold indicator
                        
                    
    
            Abstract Network glass fracture occurs as a sequence of elementary events occurring at weak sites in the glass structure. Fracture is a highly complex process that occurs suddenly and without obvious structural or thermodynamic signs prior to the event’s occurrence. We show that a stress threshold value quantified by local mechanical probing highly correlates with nanoscale crack nucleation in a two-dimensional network glass. Subsequently, a neural network-based predictor, the local intelligent stress threshold indicator (LISTI), links the local stress threshold with the undeformed local structural topology. LISTI yields a reliable heatmap indicating soft spots that strongly correlate with the localized initiation and development of the fracture process. Finally, we show that LISTI can be used to find local zones prone to rearrangement in real-measured two-dimensional silica glass structures. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2323718
- PAR ID:
- 10636795
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Physics
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2399-3650
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In this research study, the fracture strength of flat 10 mm thick annealed glass sheets having an abrasive water-jet cut surface and bearing against a transparent interface material is experimentally investigated. The transparent interface material is necessary to provide axial-compressive force continuity in modular compression-dominant all- glass shell structures. A series of short glass columns were tested in axial compression under a variety of load cases, which included cyclic, creep, and monotonic-to-fracture loading. A target glass fracture bearing stress of 36.6 MPa is identified and represents an upper bound bearing stress for annealed glass compression members failing in a flexural buckling mode. The study concludes the transparent thermoplastic material, known as Surlyn, was able to achieve a fracture strength that exceeds the target value and that the fracture strength is not affected by cyclic or creep loading. Consequently, column-related failure limit states will occur before glass fracture is associated with interface bearing. Glass fracture occurs in Type-I mode, reflecting the presence of interface tensile stress. Furthermore, the monotonic bearing stiffness in the service range of 5 to 15 MPa is increased by 20 % and 16 % for samples subjected to cyclic and creep loading, respectively, relative to monotonic-only samples.more » « less
- 
            Abstract Understanding mechanistic causes of non‐Fickian transport in fractured media is important for many hydrogeologic processes and subsurface applications. This study elucidates the effects of dead‐end fractures on non‐Fickian transport in three‐dimensional (3D) fracture networks. Although dead‐end fractures have been identified as low‐velocity regions that could delay solute transport, the direct relation between dead‐end fractures and non‐Fickian transport has been elusive. We systematically generate a large number of 3D discrete fracture networks with different fracture length distributions and fracture densities. We then identify dead‐end fractures using a novel graph‐based method. The effect of dead‐end fractures on solute residence time maximizes at the critical fracture density of the percolation threshold, leading to strong late‐time tailing. As fracture density increases beyond the percolation threshold, the network connectivity increases, and dead‐end fractures diminish. Consequently, the increase in network connectivity leads to a reduction in the degree of late‐time tailing. We also show that dead‐end fractures can inform about main transport paths, such as the mean tortuosity of particle trajectories. This study advances our mechanistic understanding of solute transport in 3D fracture networks.more » « less
- 
            Abstract The onset of brittle failure in rocks includes dilatancy and strain localization. To better understand this nucleation process, we analyze the evolution of the local three‐dimensional strain tensor using X‐ray tomograms acquired during triaxial compression experiments on granite and sandstone. The onset of the localization of the compaction, dilation, and shear strain occurs when ∼65% of the rock volume experiences dilation. Tracking the locations of the high strains throughout loading suggests that the deformation that occurs early in loading influences the location of the system‐sized fracture network that produces macroscopic failure. This influence is larger in the sandstone experiments than the granite experiments, likely due to the microstructure of the sandstone. These results have important implications for detecting precursors to catastrophic failure.more » « less
- 
            Abstract Basal crevasses threaten the stability of ice shelves through the potential to form rifts and calve icebergs. Furthermore, it is important to determine the dependence of crevasse stability on temperature due to large vertical temperature variations on ice shelves. In this work, considering the vertical temperature profile through ice viscosity, we compare (1) the theoretical crack depths and (2) the threshold stress causing the transition from basal crevasses to full thickness fractures in several fracture theories. In the Zero Stress approximation, the depth-integrated force at the crevassed and non-crevassed location are unbalanced, violating the volume-integrated Stokes equation. By incorporating a Horizontal Force Balance (HFB) argument, recent work showed analytically that the threshold stress for rift initiation is only half of that predicted by the Zero Stress approximation. We generalize the HFB theory to show that while the temperature profile influences crack depths, the threshold rifting stress is insensitive to temperature. We compare with observations and find that HFB best matches observed rifts. Using HFB instead of Zero Stress for cracks in an ice-sheet model would substantially enlarge the predicted fracture depth, reduce the threshold rifting stress and potentially increase the projected rate of ice shelf mass loss.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
