Abstract The abundance of faint dwarf galaxies is determined by the underlying population of low-mass dark matter (DM) halos and the efficiency of galaxy formation in these systems. Here, we quantify potential galaxy formation and DM constraints from future dwarf satellite galaxy surveys. We generate satellite populations using a suite of Milky Way (MW)–mass cosmological zoom-in simulations and an empirical galaxy–halo connection model, and assess sensitivity to galaxy formation and DM signals when marginalizing over galaxy–halo connection uncertainties. We find that a survey of all satellites around one MW-mass host can constrain a galaxy formation cutoff at peak virial masses of at the 1σlevel; however, a tail toward low prevents a 2σmeasurement. In this scenario, combining hosts with differing bright satellite abundances significantly reduces uncertainties on at the 1σlevel, but the 2σtail toward low persists. We project that observations of one (two) complete satellite populations can constrain warm DM models withmWDM≈ 10 keV (20 keV). Subhalo mass function (SHMF) suppression can be constrained to ≈70%, 60%, and 50% that in cold dark matter (CDM) at peak virial masses of 108, 109, and 1010M⊙, respectively; SHMF enhancement constraints are weaker (≈20, 4, and 2 times that in CDM, respectively) due to galaxy–halo connection degeneracies. These results motivate searches for faint dwarf galaxies beyond the MW and indicate that ongoing missions like Euclid and upcoming facilities including the Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope will probe new galaxy formation and DM physics.
more »
« less
This content will become publicly available on January 1, 2026
Predictions for the Detectability of Milky Way Satellite Galaxies and Outer-Halo Star Clusters with the Vera C. Rubin Observatory
We predict the sensitivity of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) to faint, resolved Milky Way satellite galaxies and outer-halo star clusters. We characterize the expected sensitivity using simulated LSST data from the LSST Dark Energy Science Collaboration (DESC) Data Challenge 2 (DC2) accessed and analyzed with the Rubin Science Platform as part of the Rubin Early Science Program. We simulate resolved stellar populations of Milky Way satellite galaxies and outer-halo star clusters over a wide range of sizes, luminosities, and heliocentric distances, which are broadly consistent with expectations for the Milky Way satellite system. We inject simulated stars into the DC2 catalog with realistic photometric uncertainties and star/galaxy separation derived from the DC2 data itself. We assess the probability that each simulated system would be detected by LSST using a conventional isochrone matched-filter technique. We find that assuming perfect star/galaxy separation enables the detection of resolved stellar systems with = 0 mag and = 10 pc with >50% efficiency out to a heliocentric distance of ~250 kpc. Similar detection efficiency is possible with a simple star/galaxy separation criterion based on measured quantities, although the false positive rate is higher due to leakage of background galaxies into the stellar sample. When assuming perfect star/galaxy classification and a model for the galaxy-halo connection fit to current data, we predict that 89 +/- 20 Milky Way satellite galaxies will be detectable with a simple matched-filter algorithm applied to the LSST wide-fast-deep data set. Different assumptions about the performance of star/galaxy classification efficiency can decrease this estimate by ~7-25%, which emphasizes the importance of high-quality star/galaxy separation for studies of the Milky Way satellite population with LSST.
more »
« less
- PAR ID:
- 10636873
- Publisher / Repository:
- The Open Journal of Astrophysics
- Date Published:
- Journal Name:
- The Open Journal of Astrophysics
- Volume:
- 8
- ISSN:
- 2565-6120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the discovery of Aquarius III, an ultra-faint Milky Way satellite galaxy identified in the second data release of the DECam Local Volume Exploration survey. Based on deeper follow-up imaging with DECam, we find that Aquarius III is a low-luminosity ( ), extended ( pc) stellar system located in the outer halo (D⊙= 85 ± 4 kpc). From medium-resolution Keck/DEIMOS spectroscopy, we identify 11 member stars and measure a mean heliocentric radial velocity of for the system and place an upper limit ofσv< 3.5 km s−1(σv< 1.6 km s−1) on its velocity dispersion at the 95% (68%) credible level. Based on calcium-triplet metallicities of the six brightest red giant members, we find that Aquarius III is very metal-poor ([Fe/H]= − 2.61 ± 0.21) with a statistically significant metallicity spread ( dex). We interpret this metallicity spread as strong evidence that the system is a dwarf galaxy as opposed to a star cluster. Combining our velocity measurement with Gaia proper motions, we find that Aquarius III is currently situated near its orbital pericenter in the outer halo (rperi= 78 ± 7 kpc) and that it is plausibly on first infall onto the Milky Way. This orbital history likely precludes significant tidal disruption from the Galactic disk, notably unlike other satellites with comparably low velocity dispersion limits in the literature. Thus, if further velocity measurements confirm that its velocity dispersion is truly belowσv≲ 2 km s−1, Aquarius III may serve as a useful laboratory for probing galaxy formation physics in low-mass halos.more » « less
-
Abstract Quantifying the connection between galaxies and their host dark matter halos has been key for testing cosmological models on various scales. BelowM⋆∼ 109M⊙, such studies have primarily relied on the satellite galaxy population orbiting the Milky Way (MW). Here we present new constraints on the connection between satellite galaxies and their host dark matter subhalos using the largest sample of satellite galaxies in the Local Volume (D≲ 12 Mpc) to date. We use 250 confirmed and 71 candidate dwarf satellites around 27 MW-like hosts from the Exploration of Local VolumE Satellites (ELVES) Survey and use the semianalyticalSatGenmodel for predicting the population of dark matter subhalos expected in the same volume. Through a Bayesian model comparison of the observed and the forward-modeled satellite stellar mass functions (SSMFs), we infer the satellite stellar-to-halo mass relation. We find that the observed SSMF is best reproduced when subhalos at the low-mass end are populated by a relation of the form , with a moderate slope of and a low scatter, constant as a function of the peak halo mass, of . A model with a steeper slope (αgrow= 2.39 ± 0.06) and a scatter that grows with decreasingMpeakis also consistent with the observed SSMF but is not required. Our new model for the satellite–subhalo connection, based on hundreds of Local Volume satellite galaxies, is in line with what was previously derived using only MW satellites.more » « less
-
Chemical abundances of stellar streams can be used to determine the nature of a stream’s progenitor. Here we study the progenitor of the recently discovered Leiptr stellar stream, which was previously suggested to be a tidally disrupted halo globular cluster. We obtain high-resolution spectra of five red giant branch stars selected from the Gaia DR2 catalog with Magellan/MIKE. One star is a clear non-member. The remaining four stars display chemical abundances consistent with those of a low-mass dwarf galaxy: they have a low mean metallicity, ; they do not all have identical metallicities; and they display low [ /Fe] and [Sr/Fe] and [Ba/Fe] . This pattern of low and neutron-capture element abundances is only found in intact dwarf galaxies with stellar mass . Although more data are needed to be certain, Leiptr’s chemistry is consistent with being the lowest-mass dwarf galaxy stream without a known intact progenitor, possibly in the mass range of ultra-faint dwarf galaxies. Leiptr thus preserves a record of one of the lowest-mass early accretion events into the Milky Way.more » « less
-
Abstract The recently discovered stellar system Ursa Major III/UNIONS 1 (UMa3/U1) is the faintest known Milky Way satellite to date. With a stellar mass of and a half-light radius of 3 ± 1 pc, it is either the darkest galaxy ever discovered or the faintest self-gravitating star cluster known to orbit the Galaxy. Its line-of-sight velocity dispersion suggests the presence of dark matter, although current measurements are inconclusive because of the unknown contribution to the dispersion of potential binary stars. We useN-body simulations to show that, if self-gravitating, the system could not survive in the Milky Way tidal field for much longer than a single orbit (roughly 0.4 Gyr), which strongly suggests that the system is stabilized by the presence of large amounts of dark matter. If UMa3/U1 formed at the center of a ∼109M⊙cuspy LCDM halo, its velocity dispersion would be predicted to be of order ∼1 km s−1. This is roughly consistent with the current estimate, which, neglecting binaries, placesσlosin the range 1–4 km s−1. Because of its dense cusp, such a halo should be able to survive the Milky Way tidal field, keeping UMa3/U1 relatively unscathed until the present time. This implies that UMa3/U1 is plausibly the faintest and densest dwarf galaxy satellite of the Milky Way, with important implications for alternative dark matter models and for the minimum halo mass threshold for luminous galaxy formation in the LCDM cosmology. Our results call for multi-epoch high-resolution spectroscopic follow-up to confirm the dark matter content of this extraordinary system.more » « less
An official website of the United States government
