skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2108168

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report the results of the deepest search to date for dwarf galaxies around NGC 3109, a barred spiral galaxy with a mass similar to that of the Small Magellanic Cloud (SMC), using a semiautomated search method. Using the Dark Energy Camera, we survey a region covering a projected distance of ∼70 kpc of NGC 3109 (D= 1.3 Mpc,Rvir∼ 90 kpc,M∼ 108M*) as part of the MADCASH and DELVE-DEEP programs. We introduce a newly developed semiresolved search method, used alongside a resolved search, to identify crowded dwarf galaxies around NGC 3109. Using both approaches, we successfully recover the known satellites Antlia and Antlia B. We identified a promising candidate, which was later confirmed to be a background dwarf through deep follow-up observations. Our detection limits are well defined, with the sample ∼80% complete down toMV∼ −8.0, and include detections of dwarf galaxies as faint asMV∼ −6.0. This is the first comprehensive study of a satellite system through resolved stars around an SMC mass host. Our results show that NGC 3109 has more bright (MV∼ −9.0) satellites than the mean predictions from cold dark matter models, but well within the host-to-host scatter. A larger sample of LMC/SMC-mass hosts is needed to test whether or not the observations are consistent with current model expectations. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Abstract We conducted an in-depth analysis of candidate member stars located in the peripheries of three ultra-faint dwarf (UFD) galaxy satellites of the Milky Way (MW): Boötes I (Boo1), Boötes II (Boo2), and Segue I (Seg1). Studying these peripheral stars has previously been difficult due to contamination from the MW foreground. We usedu-band photometry from the Dark Energy Camera (DECam) to derive metallicities to efficiently select UFD candidate member stars. This approach was validated on Boo1, where we identified both previously known and new candidate member stars beyond five half-light radii. We then applied a similar procedure to Boo2 and Seg1. Our findings hinted at evidence for tidal features in Boo1 and Seg1, with Boo1 having an elongation consistent with its proper motion and Seg1 showing some distant candidate stars, a few of which are along its elongation and proper motion. We find two Boo2 stars at large distances consistent with being candidate member stars. Using a foreground contamination rate derived from the Besançon Galaxy model, we ascribed purity estimates to each candidate member star. We recommend further spectroscopic studies on the newly identified high-purity members. Our technique offers promise for future endeavors to detect candidate member stars at large radii in other systems, leveraging metallicity-sensitive filters with the Legacy Survey of Space and Time and the new, narrowband Ca HK filter on DECam. 
    more » « less
  3. Abstract We report the first comprehensive census of the satellite dwarf galaxies around NGC 55 (2.1 Mpc) as a part of the DECam Local Volume Exploration DEEP (DELVE-DEEP) survey. NGC 55 is one of four isolated, Magellanic analogs in the Local Volume around which DELVE-DEEP aims to identify faint dwarfs and other substructures. We employ two complementary detection methods: one targets fully resolved dwarf galaxies by identifying them as stellar overdensities, while the other focuses on semiresolved dwarf galaxies, detecting them through shredded unresolved light components. As shown through extensive tests with injected galaxies, our search is sensitive to candidates down toMV ≲ −6.6 and surface brightnessμ ≲ 28.5 mag arcsec2, and ∼80% complete down toMV ≲ −7.8. We do not report any new confirmed satellites beyond two previously known systems, ESO 294–010 and NGC 55-dw1. We construct the satellite luminosity function of NGC 55 and find it to be consistent with the predictions from cosmological simulations. As one of the first complete luminosity functions for a Magellanic analog, our results provide a glimpse of the constraints on low-mass-host satellite populations that will be further explored by upcoming surveys, such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time. 
    more » « less
  4. We present the Dark Energy Camera All Data Everywhere (DECADE) weak lensing dataset: a catalog of 107 million galaxies observed by the Dark Energy Camera (DECam) in the northern Galactic cap. This catalog was assembled from public DECam data including survey and standard observing programs. These data were consistently processed with the Dark Energy Survey Data Management pipeline as part of the DECADE campaign and serve as the basis of the DECam Local Volume Exploration survey (DELVE) Early Data Release 3 (EDR3). We apply the Metacalibration measurement algorithm to generate and calibrate galaxy shapes. After cuts, the resulting cosmology-ready galaxy shape catalog covers a region of 5,412 deg2 with an effective number density of 4.59 arcmin−2. The coadd images used to derive this data have a median limiting magnitude of r=23.6, i=23.2, and z=22.6, estimated at S/N=10 in a 2 arcsecond aperture. We present a suite of detailed studies to characterize the catalog, measure any residual systematic biases, and verify that the catalog is suitable for cosmology analyses. In parallel, we build an image simulation pipeline to characterize the remaining multiplicative shear bias in this catalog, which we measure to be m=(−2.454±0.124)×10−2 for the full sample. Despite the significantly inhomogeneous nature of the data set, due to it being an amalgamation of various observing programs, we find the resulting catalog has sufficient quality to yield competitive cosmological constraints. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  5. We present the photometric redshift characterization and calibration for the Dark Energy Camera All Data Everywhere (DECADE) weak lensing dataset: a catalog of 107 million galaxies observed by the Dark Energy Camera (DECam) in the northern Galactic cap. The redshifts are estimated from a combination of wide-field photometry, deep-field photometry with associated redshift estimates, and a transfer function between the wide field and deep field that is estimated using a source injection catalog. We construct four tomographic bins for the galaxy catalog, and estimate the redshift distribution, n ( z ) , within each one using the Self-organizing Map Photo-Z (SOMPZ) methodology. Our estimates include the contributions from sample variance, zeropoint calibration uncertainties, and redshift biases, as quantified for the deep-field dataset. The total uncertainties on the mean redshifts are σ z 0.01 . The SOMPZ estimates are then compared to those from the clustering redshift method, obtained by cross-correlating our source galaxies with galaxies in spectroscopic surveys, and are shown to be consistent with each other. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  6. We present the pipeline for the cosmic shear analysis of the Dark Energy Camera All Data Everywhere (DECADE) weak lensing dataset: a catalog consisting of 107 million galaxies observed by the Dark Energy Camera (DECam) in the northern Galactic cap. The catalog derives from a large number of disparate observing programs and is therefore more inhomogeneous across the sky compared to existing lensing surveys. First, we use simulated data-vectors to show the sensitivity of our constraints to different analysis choices in our inference pipeline, including sensitivity to residual systematics. Next we use simulations to validate our covariance modeling for inhomogeneous datasets. Finally, we show that our choices in the end-to-end cosmic shear pipeline are robust against inhomogeneities in the survey, by extracting relative shifts in the cosmology constraints across different subsets of the footprint/catalog and showing they are all consistent within 1 σ to 2 σ . This is done for forty-six subsets of the data and is carried out in a fully consistent manner: for each subset of the data, we re-derive the photometric redshift estimates, shear calibrations, survey transfer functions, the data vector, measurement covariance, and finally, the cosmological constraints. Our results show that existing analysis methods for weak lensing cosmology can be fairly resilient towards inhomogeneous datasets. This also motivates exploring a wider range of image data for pursuing such cosmological constraints. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  7. We present cosmological constraints from the Dark Energy Camera All Data Everywhere (DECADE) cosmic shear analysis. This work uses shape measurements for 107 million galaxies measured through Dark Energy Camera (DECam) imaging of 5 , 412 deg 2 of sky that is outside the Dark Energy Survey (DES) footprint. We derive constraints on the cosmological parameters S 8 = 0.791 0.032 + 0.027 and for the Λ CDM model, which are consistent with those from other weak lensing surveys and from the cosmic microwave background. We combine our results with cosmic shear results from DES Y3 at the likelihood level, since the two datasets span independent areas on the sky. The combined measurements, which cover 10 , 000 deg 2 , prefer S 8 = 0.791 ± 0.023 and under the Λ CDM model. These results are the culmination of a series of rigorous studies that characterize and validate the DECADE dataset and the associated analysis methodologies (Anbajagane et. al 2025a,b,c). Overall, the DECADE project demonstrates that the cosmic shear analysis methods employed in Stage-III weak lensing surveys can provide robust cosmological constraints for fairly inhomogeneous datasets. This opens the possibility of using data that have been previously categorized as ``unusable’’ for cosmic shear analyses, thereby increasing the statistical power of upcoming weak lensing surveys. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  8. We predict the sensitivity of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) to faint, resolved Milky Way satellite galaxies and outer-halo star clusters. We characterize the expected sensitivity using simulated LSST data from the LSST Dark Energy Science Collaboration (DESC) Data Challenge 2 (DC2) accessed and analyzed with the Rubin Science Platform as part of the Rubin Early Science Program. We simulate resolved stellar populations of Milky Way satellite galaxies and outer-halo star clusters over a wide range of sizes, luminosities, and heliocentric distances, which are broadly consistent with expectations for the Milky Way satellite system. We inject simulated stars into the DC2 catalog with realistic photometric uncertainties and star/galaxy separation derived from the DC2 data itself. We assess the probability that each simulated system would be detected by LSST using a conventional isochrone matched-filter technique. We find that assuming perfect star/galaxy separation enables the detection of resolved stellar systems with M V = 0 mag and r 1 / 2 = 10 pc with >50% efficiency out to a heliocentric distance of ~250 kpc. Similar detection efficiency is possible with a simple star/galaxy separation criterion based on measured quantities, although the false positive rate is higher due to leakage of background galaxies into the stellar sample. When assuming perfect star/galaxy classification and a model for the galaxy-halo connection fit to current data, we predict that 89 +/- 20 Milky Way satellite galaxies will be detectable with a simple matched-filter algorithm applied to the LSST wide-fast-deep data set. Different assumptions about the performance of star/galaxy classification efficiency can decrease this estimate by ~7-25%, which emphasizes the importance of high-quality star/galaxy separation for studies of the Milky Way satellite population with LSST. 
    more » « less
  9. We present galaxy-galaxy lensing measurements using a sample of low surface brightness galaxies (LSBGs) drawn from the Dark Energy Survey Year 3 (Y3) data as lenses. LSBGs are diffuse galaxies with a surface brightness dimmer than the ambient night sky. These dark-matter-dominated objects are intriguing due to potentially unusual formation channels that lead to their diffuse stellar component. Given the faintness of LSBGs, using standard observational techniques to characterize their total masses proves challenging. Weak gravitational lensing, which is less sensitive to the stellar component of galaxies, could be a promising avenue to estimate the masses of LSBGs. Our LSBG sample consists of 23,790 galaxies separated into red and blue color types at g i 0.60 and g i < 0.60 , respectively. Combined with the DES Y3 shear catalog, we measure the tangential shear around these LSBGs and find signal-to-noise ratios of 6.67 for the red sample, 2.17 for the blue sample, and 5.30 for the full sample. We use the clustering redshifts method to obtain redshift distributions for the red and blue LSBG samples. Assuming all red LSBGs are satellites, we fit a simple model to the measurements and estimate the host halo mass of these LSBGs to be . We place a 95% upper bound on the subhalo mass at . By contrast, we assume the blue LSBGs are centrals, and place a 95% upper bound on the halo mass at log ( M h o s t / M ) < 11.84 . We find that the stellar-to-halo mass ratio of the LSBG samples is consistent with that of the general galaxy population. This work illustrates the viability of using weak gravitational lensing to constrain the halo masses of LSBGs. 
    more » « less
  10. Abstract We present the second public data release (DR2) from the DECam Local Volume Exploration survey (DELVE). DELVE DR2 combines new DECam observations with archival DECam data from the Dark Energy Survey, the DECam Legacy Survey, and other DECam community programs. DELVE DR2 consists of ∼160,000 exposures that cover >21,000 deg 2 of the high-Galactic-latitude (∣ b ∣ > 10°) sky in four broadband optical/near-infrared filters ( g , r , i , z ). DELVE DR2 provides point-source and automatic aperture photometry for ∼2.5 billion astronomical sources with a median 5 σ point-source depth of g = 24.3, r = 23.9, i = 23.5, and z = 22.8 mag. A region of ∼17,000 deg 2 has been imaged in all four filters, providing four-band photometric measurements for ∼618 million astronomical sources. DELVE DR2 covers more than 4 times the area of the previous DELVE data release and contains roughly 5 times as many astronomical objects. DELVE DR2 is publicly available via the NOIRLab Astro Data Lab science platform. 
    more » « less