We describe the rising trajectory of bubbles in isotropic turbulence and quantify the slowdown of the mean rise velocity of bubbles with sizes within the inertial subrange. We perform direct numerical simulations of bubbles, for a wide range of turbulence intensity, bubble inertia and deformability, with systematic comparison with the corresponding quiescent case, with Reynolds number at the Taylor microscale from 38 to 77. Turbulent fluctuations randomise the rising trajectory and cause a reduction of the mean rise velocity$$\tilde {w}_b$$compared with the rise velocity in quiescent flow$$w_b$$. The decrease in mean rise velocity of bubbles$$\tilde {w}_b/w_b$$is shown to be primarily a function of the ratio of the turbulence intensity and the buoyancy forces, described by the Froude number$$Fr=u'/\sqrt {gd}$$, where$$u'$$is the root-mean-square velocity fluctuations,$$g$$is gravity and$$d$$is the bubble diameter. The bubble inertia, characterised by the ratio of inertial to viscous forces (Galileo number), and the bubble deformability, characterised by the ratio of buoyancy forces to surface tension (Bond number), modulate the rise trajectory and velocity in quiescent fluid. The slowdown of these bubbles in the inertial subrange is not due to preferential sampling, as is the case with sub-Kolmogorov bubbles. Instead, it is caused by the nonlinear drag–velocity relationship, where velocity fluctuations lead to an increased average drag. For$$Fr > 0.5$$, we confirm the scaling$$\tilde {w}_b / w_b \propto 1 / Fr$$, as proposed previously by Ruthet al.(J. Fluid Mech., vol. 924, 2021, p. A2), over a wide range of bubble inertia and deformability.
more »
« less
This content will become publicly available on August 1, 2026
Inverse cascade from helical and non-helical decaying columnar magnetic fields
Powerful lasers may be used in the future to produce magnetic fields that would allow us to study turbulent magnetohydrodynamic inverse cascade behaviour. This has so far only been seen in numerical simulations. In the laboratory, however, the produced fields may be highly anisotropic. Here, we present corresponding simulations to show that, during the turbulent decay, such a magnetic field undergoes spontaneous isotropisation. As a consequence, we find the decay dynamics to be similar to that in isotropic turbulence. We also find that an initially pointwise non-helical magnetic field is unstable and develops magnetic helicity fluctuations that can be quantified by the Hosking integral. It is a conserved quantity that characterises magnetic helicity fluctuations and governs the turbulent decay when the mean magnetic helicity vanishes. As in earlier work, the ratio of the magnetic decay time to the Alfvén time is found to be approximately$$50$$in the helical and non-helical cases. At intermediate times, the ratio can even reach a hundred. This ratio determines the endpoints of cosmological magnetic field evolution.
more »
« less
- Award ID(s):
- 2307698
- PAR ID:
- 10636885
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Plasma Physics
- Volume:
- 91
- Issue:
- 4
- ISSN:
- 0022-3778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Magnetic reconnection is an important process in astrophysical environments, as it reconfigures magnetic field topology and converts magnetic energy into thermal and kinetic energy. In extreme astrophysical systems, such as black hole coronae and pulsar magnetospheres, radiative cooling modifies the energy partition by radiating away internal energy, which can lead to the radiative collapse of the reconnection layer. In this paper, we perform two- and three-dimensional simulations to model the MARZ (Magnetic Reconnection on Z) experiments, which are designed to access cooling rates in the laboratory necessary to investigate reconnection in a previously unexplored radiatively cooled regime. These simulations are performed in GORGON, an Eulerian two-temperature resistive magnetohydrodynamic code, which models the experimental geometry comprising two exploding wire arrays driven by 20 MA of current on the Z machine (Sandia National Laboratories). Radiative losses are implemented using non-local thermodynamic equilibrium tables computed using the atomic code Spk, and we probe the effects of radiation transport by implementing both a local radiation loss model and$$P_{1/3}$$multi-group radiation transport. The load produces highly collisional, super-Alfvénic (Alfvén Mach number$$M_A \approx 1.5$$), supersonic (Sonic Mach number$$M_S \approx 4-5$$) strongly driven plasma flows which generate an elongated reconnection layer (Aspect Ratio$$L/\delta \approx 100$$, Lundquist number$$S_L \approx 400$$). The reconnection layer undergoes radiative collapse when the radiative losses exceed the rates of ohmic and compressional heating (cooling rate/hydrodynamic transit rate =$$\tau _{\text {cool}}^{-1}/\tau _{H}^{-1}\approx 100$$); this generates a cold strongly compressed current sheet, leading to an accelerated reconnection rate, consistent with theoretical predictions. Finally, the current sheet is also unstable to the plasmoid instability, but the magnetic islands are extinguished by strong radiative cooling before ejection from the layer.more » « less
-
The magnetohydrodynamic (MHD) equations, as a collisional fluid model that remains in local thermodynamic equilibrium (LTE), have long been used to describe turbulence in myriad space and astrophysical plasmas. Yet, the vast majority of these plasmas, from the solar wind to the intracluster medium (ICM) of galaxy clusters, are only weakly collisional at best, meaning that significant deviations from LTE are not only possible but common. Recent studies have demonstrated that the kinetic physics inherent to this weakly collisional regime can fundamentally transform the evolution of such plasmas across a wide range of scales. Here, we explore the consequences of pressure anisotropy and Larmor-scale instabilities for collisionless,$$\beta \gg 1$$, turbulence, focusing on the role of a self-organizational effect known as ‘magneto-immutability’. We describe this self-organization analytically through a high-$$\beta$$, reduced ordering of the Chew–Goldberger–Low-MHD (CGL-MHD) equations, finding that it is a robust inertial-range effect that dynamically suppresses magnetic-field-strength fluctuations, anisotropic-pressure stresses and dissipation due to heat fluxes. As a result, the turbulent cascade of Alfvénic fluctuations continues below the putative viscous scale to form a robust, nearly conservative, MHD-like inertial range. These findings are confirmed numerically via Landau-fluid CGL-MHD turbulence simulations that employ a collisional closure to mimic the effects of microinstabilities. We find that microinstabilities occupy a small ($${\sim }5\,\%$$) volume-filling fraction of the plasma, even when the pressure anisotropy is driven strongly towards its instability thresholds. We discuss these results in the context of recent predictions for ion-vs-electron heating in low-luminosity accretion flows and observations implying suppressed viscosity in ICM turbulence.more » « less
-
Based on a generalized local Kolmogorov–Hill equation expressing the evolution of kinetic energy integrated over spheres of size$$\ell$$in the inertial range of fluid turbulence, we examine a possible definition of entropy and entropy generation for turbulence. Its measurement from direct numerical simulations in isotropic turbulence leads to confirmation of the validity of the fluctuation relation (FR) from non-equilibrium thermodynamics in the inertial range of turbulent flows. Specifically, the ratio of probability densities of forward and inverse cascade at scale$$\ell$$is shown to follow exponential behaviour with the entropy generation rate if the latter is defined by including an appropriately defined notion of ‘temperature of turbulence’ proportional to the kinetic energy at scale$$\ell$$.more » « less
-
Young stellar objects (YSOs) are protostars that exhibit bipolar outflows fed by accretion disks. Theories of the transition between disk and outflow often involve a complex magnetic field structure thought to be created by the disk coiling field lines at the jet base; however, due to limited resolution, these theories cannot be confirmed with observation and thus may benefit from laboratory astrophysics studies. We create a dynamically similar laboratory system by driving a$$\sim$$1 MA current pulse with a 200 ns rise through a$$\approx$$2 mm-tall Al cylindrical wire array mounted to a three-dimensional (3-D)-printed, stainless steel scaffolding. This system creates a plasma that converges on the centre axis and ejects cm-scale bipolar outflows. Depending on the chosen 3-D-printed load path, the system may be designed to push the ablated plasma flow radially inwards or off-axis to make rotation. In this paper, we present results from the simplest iteration of the load which generates radially converging streams that launch non-rotating jets. The temperature, velocity and density of the radial inflows and axial outflows are characterized using interferometry, gated optical and ultraviolet imaging, and Thomson scattering diagnostics. We show that experimental measurements of the Reynolds number and sonic Mach number in three different stages of the experiment scale favourably to the observed properties of YSO jets with$$Re\sim 10^5\unicode{x2013}10^9$$and$$M\sim 1\unicode{x2013}10$$, while our magnetic Reynolds number of$$Re_M\sim 1\unicode{x2013}15$$indicates that the magnetic field diffuses out of our plasma over multiple hydrodynamical time scales. We compare our results with 3-D numerical simulations in the PERSEUS extended magnetohydrodynamics code.more » « less
An official website of the United States government
