skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temperature-Controlled 3D Cryoprinting Inks Made of Mixtures of Alginate and Agar
Temperature-controlled 3D cryoprinting (TCC) is an emerging tissue engineering technology aimed at overcoming limitations of conventional 3D printing for large organs: (a) size constraints due to low print rigidity and (b) the preservation of living cells during printing and subsequent tissue storage. TCC addresses these challenges by freezing each printed voxel with controlled cooling rates during deposition. This generates a rigid structure upon printing and ensures cell cryopreservation as an integral part of the process. Previous studies used alginate-based ink, which has limitations: (a) low diffusivity of the CaCl2 crosslinker during TCC’s crosslinking process and (b) typical loss of print fidelity with alginate ink. This study explores the use of an ink made of agar and alginate to overcome TCC protocol limitations. When an agar/alginate voxel is deposited, agar first gels at above-freezing temperatures, capturing the desired structure without compromising fidelity, while alginate remains uncrosslinked. During subsequent freezing, both frozen agar and alginate maintain the structure. However, agar gel loses its gel form and water-retaining ability. In TCC, alginate crosslinking occurs by immersing the frozen structure in a warm crosslinking bath. This enables CaCl2 diffusion into the crosslinked alginate congruent with the melting process. Melted agar domains, with reduced water-binding ability, enhance crosslinker diffusivity, reducing TCC procedure duration. Additionally, agar overcomes the typical fidelity loss associated with alginate ink printing.  more » « less
Award ID(s):
1941543
PAR ID:
10637035
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Gels
Volume:
9
Issue:
9
ISSN:
2310-2861
Page Range / eLocation ID:
689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Temperature-Controlled-Cryoprinting (TCC) is a new 3D bioprinting technology that allows for the fabrication and cryopreservation of complex and large cell-laden scaffolds. During TCC, bioink is deposited on a freezing plate that descends further into a cooling bath, keeping the temperature at the nozzle constant. To demonstrate the effectiveness of TCC, we used it to fabricate and cryopreserve cell-laden 3D alginate-based scaffolds with high cell viability and no size limitations. Our results show that Vero cells in a 3D TCC bioprinted scaffold can survive cryopreservation with a viability of 71%, and cell viability does not decrease as higher layers are printed. In contrast, previous methods had either low cell viability or decreasing efficacy for tall or thick scaffolds. We used an optimal temperature profile for freezing during 3D printing using the two-step interrupted cryopreservation method and evaluated drops in cell viability during the various stages of TCC. Our findings suggest that TCC has significant potential for advancing 3D cell culture and tissue engineering. 
    more » « less
  2. Abstract 3D bioprinting is a fabrication method with many biomedical applications, particularly within tissue engineering. The use of freezing during 3D bioprinting, aka "3D cryoprinting," can be utilized to create micopores within tissue-engineered scaffolds to enhance cell proliferation. When used with alginate bioinks, this type of 3D cryoprinting requires three steps: 3D printing, crosslinking, and freezing. This study investigated the influence of crosslinking order and cooling rate on the microstructure and mechanical properties of sodium alginate scaffolds. We designed and built a novel modular 3D printer in order to study the effects of these steps separately and to address many of the manufacturing issues associated with 3D cryoprinting. With the modular 3D printer, 3D printing, crosslinking, and freezing were conducted on separate modules yet remain part of a continuous manufacturing process. Crosslinking before the freezing step produced highly interconnected and directional pores, which are ideal for promoting cell growth. By controlling the cooling rate, it was possible to produce pores with diameters from a range of 5 μm to 40 μm. Tensile and firmness testing found that the use of freezing does not decrease the tensile strength of the printed objects, though there was a significant loss in firmness for strands with larger pores. 
    more » « less
  3. Abstract Polymeric systems displaying spontaneous formation of surface wrinkling patterns are useful for a wide range of applications, such as diffraction gratings, flexible electronics, smart adhesives, optical devices, and cell culture platforms. Conventional fabrication techniques for wrinkling patterns involves multitude of processing steps and impose significant limitations on fabrication of hierarchical patterns, creating wrinkles on 3D and nonplanar structures, the scalability of the manufacturing process, and the integration of wrinkle fabrication process into a continuous manufacturing process. In this work, 4D printing of surface morphing hydrogels enabling direct fabrication of wrinkling patterns on curved and/or 3D structures with user‐defined and spatially controlled pattern geometry and size is reported. The key to successful printing is to tailor the photopolymerization time and partial crosslinking time of the hydrogel inks. The interplay between crosslinker concentration and postprinting crosslinking time allow for the control over wrinkling morphology and the characteristic size of the patterns. The pattern alignment is controlled by the print strut size—the size of the solid material extruded from the print nozzle in the form of a line. To demonstrate the utility of the approach, tunable optical devices, a solvent/humidity sensor for microchips, and cell culture platforms to control stem cell shape are fabricated. 
    more » « less
  4. Hydrogels are attractive materials for tissue engineering, but efforts to date have shown limited ability to produce the microstructural features necessary to promote cellular self-organization into hierarchical three-dimensional (3D) organ models. Here we develop a hydrogel ink containing prefabricated gelatin fibres to print 3D organ-level scaffolds that recapitulate the intra- and intercellular organization of the heart. The addition of prefabricated gelatin fibres to hydrogels enables the tailoring of the ink rheology, allowing for a controlled sol–gel transition to achieve precise printing of free-standing 3D structures without additional supporting materials. Shear-induced alignment of fibres during ink extrusion provides microscale geometric cues that promote the self-organization of cultured human cardiomyocytes into anisotropic muscular tissues in vitro. The resulting 3D-printed ventricle in vitro model exhibited biomimetic anisotropic electrophysiological and contractile properties. 
    more » « less
  5. Maintaining shape fidelity of 3D bio-printed scaffolds with soft biomaterials is an ongoing challenge. Here, a rheological investigation focusing on identifying useful physical and mechanical properties directly related to the geometric fidelity of 3D bio-printed scaffolds is presented. To ensure during- and post-printing shape fidelity of the scaffolds, various percentages of Carboxymethyl Cellulose (CMC) (viscosity enhancer) and different calcium salts (CaCl2 and CaSO4, physical cross-linkers) were mixed into alginate before extrusion to realize shape fidelity. The overall solid content of Alginate-Carboxymethyl Cellulose (CMC) was limited to 6%. A set of rheological tests, e.g., flow curves, amplitude tests, and three interval thixotropic tests, were performed to identify and compare the shear-thinning capacity, gelation points, and recovery rate of various compositions. The geometrical fidelity of the fabricated scaffolds was defined by printability and collapse tests. The effect of using multiple cross-linkers simultaneously was assessed. Various large-scale scaffolds were fabricated (up to 5.0 cm) using a pre-crosslinked hybrid. Scaffolds were assessed for the ability to support the growth of Escherichia coli using the Most Probable Number technique to quantify bacteria immediately after inoculation and 24 h later. This pre-crosslinking-based rheological property controlling technique can open a new avenue for 3D bio-fabrication of scaffolds, ensuring proper geometry. 
    more » « less