Abstract We prove a Khintchine-type recurrence theorem for pairs of endomorphisms of a countable discrete abelian group. As a special case of the main result, if$$\Gamma $$is a countable discrete abelian group,$$\varphi , \psi \in \mathrm {End}(\Gamma )$$, and$$\psi - \varphi $$is an injective endomorphism with finite index image, then for any ergodic measure-preserving$$\Gamma $$-system$$( X, {\mathcal {X}}, \mu , (T_g)_{g \in \Gamma } )$$, any measurable set$$A \in {\mathcal {X}}$$, and any$${\varepsilon }> 0$$, there is a syndetic set of$$g \in \Gamma$$such that$$\mu ( A \cap T_{\varphi(g)}^{-1} A \cap T_{\psi(g)}^{-1} A ) > \mu(A)^3 - \varepsilon$$. This generalizes the main results of Ackelsberget al[Khintchine-type recurrence for 3-point configurations.Forum Math. Sigma10(2022), Paper no. e107] and essentially answers a question left open in that paper [Question 1.12; Khintchine-type recurrence for 3-point configurations.Forum Math. Sigma10(2022), Paper no. e107]. For the group$$\Gamma = {\mathbb {Z}}^d$$, the result applies to pairs of endomorphisms given by matrices whose difference is non-singular. The key ingredients in the proof are: (1) a recent result obtained jointly with Bergelson and Shalom [Khintchine-type recurrence for 3-point configurations.Forum Math. Sigma10(2022), Paper no. e107] that says that the relevant ergodic averages are controlled by a characteristic factor closely related to thequasi-affine(orConze–Lesigne) factor; (2) an extension trick to reduce to systems with well-behaved (with respect to$$\varphi $$and$$\psi $$) discrete spectrum; and (3) a description of Mackey groups associated to quasi-affine cocycles over rotational systems with well-behaved discrete spectrum.
more »
« less
Limit sets of unfolding paths in outer space
Abstract We construct an unfolding path in Outer space which does not converge in the boundary, and instead it accumulates on the entire 1-simplex of projectivized length measures on a nongeometric arational$${\mathbb R}$$-treeT. We also show thatTadmits exactly two dual ergodic projective currents. This is the first nongeometric example of an arational tree that is neither uniquely ergodic nor uniquely ergometric.
more »
« less
- Award ID(s):
- 1651963
- PAR ID:
- 10637085
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of the Institute of Mathematics of Jussieu
- Volume:
- 23
- Issue:
- 5
- ISSN:
- 1474-7480
- Page Range / eLocation ID:
- 2365 to 2403
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract For a connected reductive groupGover a nonarchimedean local fieldFof positive characteristic, Genestier-Lafforgue and Fargues-Scholze have attached a semisimple parameter$${\mathcal {L}}^{ss}(\pi )$$to each irreducible representation$$\pi $$. Our first result shows that the Genestier-Lafforgue parameter of a tempered$$\pi $$can be uniquely refined to a tempered L-parameter$${\mathcal {L}}(\pi )$$, thus giving the unique local Langlands correspondence which is compatible with the Genestier-Lafforgue construction. Our second result establishes ramification properties of$${\mathcal {L}}^{ss}(\pi )$$for unramifiedGand supercuspidal$$\pi $$constructed by induction from an open compact (modulo center) subgroup. If$${\mathcal {L}}^{ss}(\pi )$$is pure in an appropriate sense, we show that$${\mathcal {L}}^{ss}(\pi )$$is ramified (unlessGis a torus). If the inducing subgroup is sufficiently small in a precise sense, we show$$\mathcal {L}^{ss}(\pi )$$is wildly ramified. The proofs are via global arguments, involving the construction of Poincaré series with strict control on ramification when the base curve is$${\mathbb {P}}^1$$and a simple application of Deligne’s Weil II.more » « less
-
Abstract Let$$M_{\langle \mathbf {u},\mathbf {v},\mathbf {w}\rangle }\in \mathbb C^{\mathbf {u}\mathbf {v}}{\mathord { \otimes } } \mathbb C^{\mathbf {v}\mathbf {w}}{\mathord { \otimes } } \mathbb C^{\mathbf {w}\mathbf {u}}$$denote the matrix multiplication tensor (and write$$M_{\langle \mathbf {n} \rangle }=M_{\langle \mathbf {n},\mathbf {n},\mathbf {n}\rangle }$$), and let$$\operatorname {det}_3\in (\mathbb C^9)^{{\mathord { \otimes } } 3}$$denote the determinant polynomial considered as a tensor. For a tensorT, let$$\underline {\mathbf {R}}(T)$$denote its border rank. We (i) give the first hand-checkable algebraic proof that$$\underline {\mathbf {R}}(M_{\langle 2\rangle })=7$$, (ii) prove$$\underline {\mathbf {R}}(M_{\langle 223\rangle })=10$$and$$\underline {\mathbf {R}}(M_{\langle 233\rangle })=14$$, where previously the only nontrivial matrix multiplication tensor whose border rank had been determined was$$M_{\langle 2\rangle }$$, (iii) prove$$\underline {\mathbf {R}}( M_{\langle 3\rangle })\geq 17$$, (iv) prove$$\underline {\mathbf {R}}(\operatorname {det}_3)=17$$, improving the previous lower bound of$$12$$, (v) prove$$\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.32\mathbf {n}$$for all$$\mathbf {n}\geq 25$$, where previously only$$\underline {\mathbf {R}}(M_{\langle 2\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1$$was known, as well as lower bounds for$$4\leq \mathbf {n}\leq 25$$, and (vi) prove$$\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+1.6\mathbf {n}$$for all$$\mathbf {n} \ge 18$$, where previously only$$\underline {\mathbf {R}}(M_{\langle 3\mathbf {n}\mathbf {n}\rangle })\geq \mathbf {n}^2+2$$was known. The last two results are significant for two reasons: (i) they are essentially the first nontrivial lower bounds for tensors in an “unbalanced” ambient space and (ii) they demonstrate that the methods we use (border apolarity) may be applied to sequences of tensors. The methods used to obtain the results are new and “nonnatural” in the sense of Razborov and Rudich, in that the results are obtained via an algorithm that cannot be effectively applied to generic tensors. We utilize a new technique, calledborder apolaritydeveloped by Buczyńska and Buczyński in the general context of toric varieties. We apply this technique to develop an algorithm that, given a tensorTand an integerr, in a finite number of steps, either outputs that there is no border rankrdecomposition forTor produces a list of all normalized ideals which could potentially result from a border rank decomposition. The algorithm is effectively implementable whenThas a large symmetry group, in which case it outputs potential decompositions in a natural normal form. The algorithm is based on algebraic geometry and representation theory.more » « less
-
Abstract Let$${{\mathcal {H}}}$$be a stratum of translation surfaces with at least two singularities, let$$m_{{{\mathcal {H}}}}$$denote the Masur-Veech measure on$${{\mathcal {H}}}$$, and let$$Z_0$$be a flow on$$({{\mathcal {H}}}, m_{{{\mathcal {H}}}})$$obtained by integrating a Rel vector field. We prove that$$Z_0$$is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces$$({\mathcal L}, m_{{\mathcal L}})$$, where$${\mathcal L} \subset {{\mathcal {H}}}$$is an orbit-closure for the action of$$G = \operatorname {SL}_2({\mathbb {R}})$$(i.e., an affine invariant subvariety) and$$m_{{\mathcal L}}$$is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of$$Z_0$$with respect to any of the measures$$m_{{{\mathcal L}}}$$is zero.more » « less
-
Abstract We study higher uniformity properties of the Möbius function$$\mu $$, the von Mangoldt function$$\Lambda $$, and the divisor functions$$d_k$$on short intervals$$(X,X+H]$$with$$X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$$for a fixed constant$$0 \leq \theta < 1$$and any$$\varepsilon>0$$. More precisely, letting$$\Lambda ^\sharp $$and$$d_k^\sharp $$be suitable approximants of$$\Lambda $$and$$d_k$$and$$\mu ^\sharp = 0$$, we show for instance that, for any nilsequence$$F(g(n)\Gamma )$$, we have$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$ when$$\theta = 5/8$$and$$f \in \{\Lambda , \mu , d_k\}$$or$$\theta = 1/3$$and$$f = d_2$$. As a consequence, we show that the short interval Gowers norms$$\|f-f^\sharp \|_{U^s(X,X+H]}$$are also asymptotically small for any fixedsfor these choices of$$f,\theta $$. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in$$L^2$$. Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type$$II$$sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type$$I_2$$sums.more » « less
An official website of the United States government

