skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: City–company collaboration towards aligned science-based target setting
Abstract Cities and companies have great potential to reduce pressures on Earth system boundaries. Science-based target setting has emerged as a powerful tool to help achieve the potential, but its uptake has been limited. Moreover, cities and companies usually develop their targets separately, even though many are co-located. Focusing on the top 200 cities and 500 companies by greenhouse gas emissions, we analyse the current state and potential of adopting science-based targets for climate. Of these key actors, 110 cities with existing net-zero targets and 22 companies with existing science-based targets could together eliminate up to 3.41 GtCO2e of annual emissions. We argue that this reduction potential could increase by as much as 67% (to 5.70 GtCO2e) if the cities and companies that already have targets bring their co-located counterparts on board to keep abreast of their ambitions. Using freshwater as another example, we discuss entry points for addressing interrelated Earth system boundaries through city–company collaborations. Our findings elucidate previously untapped potentials that could accelerate transformations for operating within Earth system boundaries.  more » « less
Award ID(s):
2118329
PAR ID:
10637102
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature Sustainability
Volume:
8
Issue:
1
ISSN:
2398-9629
Page Range / eLocation ID:
54 to 65
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Carbon dioxide (CO2) quantification is critical for assessing city‐level carbon emissions and sustainable urban development. While urban vegetation has the potential to provide environmental benefits, such as heat and carbon mitigation, the CO2exchange from biogenic sectors and its impact from the environmental perturbations are often overlooked. It is also challenging to simulate the plant functions in the complex urban terrain. This study presents a processed‐based modeling approach to assess the biogenic carbon fluxes from the vegetated areas over the Chicago Metropolitan Area (CMA) using the Weather Research and Forecast—Urban Biogenic Carbon exchange model. We investigate the change of CO2sink power in CMA under heatwaves and irrigation. The results indicate that the vegetation plays a significant role in the city's carbon portfolio and the landscaping management has the potential to reduce carbon emissions significantly. Furthermore, based on the competing mechanisms in the biogenic carbon balance identified in this study, we develop a novel Environmental Benefit Score metrics framework to identify the vulnerability and mitigation measures associated with nature‐based solutions (NbS) within CMA. By using the generalized portable framework and our science‐policy confluence analysis presented in this study, global cities can maximize the effectiveness of NbS and accelerate carbon neutrality. 
    more » « less
  2. Abstract Annual carbon dioxide (CO2) emissions from the U.S. power sector decreased 24% from 2000 to 2018, while carbon intensity (CO2per unit of electricity generated) declined by 34%. These reductions have been attributed in part to a shift from coal to natural gas, as gas‐fired plants emit roughly half the CO2emissions as coal plants. To date, no analysis has looked at the coal‐to‐gas shift from the perspective of commitment accounting—the cumulative future CO2emissions expected from power infrastructure. We estimate that between 2000 and 2018, committed emissions in the U.S. power sector decreased 12% (six GtCO2), from 49 to 43 GtCO2, assuming average generator lifetimes and capacity factors. Taking into consideration methane leakage during the life cycle of coal and gas plants, this decrease in committed emissions is further offset (e.g., assuming a 3% leakage rate, there is effectively no reduction at all). Thus, although annual emissions have fallen, cumulative future emissions will not be substantially lower unless existing coal and gas plants operate at significantly lower rates than they have historically. Moreover, our estimates of committed emissions for U.S. coal and gas plants finds steep reductions in plant use and/or early retirements are already needed for the country to meet its targets under the Paris climate agreement—even if no new fossil capacity is added. 
    more » « less
  3. Abstract Groundwater irrigation of cropland is expanding worldwide with poorly known implications for climate change. This study compares experimental measurements of the net global warming impact of a rainfed versus a groundwater‐irrigated corn (maize)–soybean–wheat, no‐till cropping system in the Midwest US, the region that produces the majority of U.S. corn and soybean. Irrigation significantly increased soil organic carbon (C) storage in the upper 25 cm, but not by enough to make up for the CO2‐equivalent (CO2e) costs of fossil fuel power, soil emissions of nitrous oxide (N2O), and degassing of supersaturated CO2and N2O from the groundwater. A rainfed reference system had a net mitigating effect of −13.9 (±31) g CO2e m−2 year−1, but with irrigation at an average rate for the region, the irrigated system contributed to global warming with net greenhouse gas (GHG) emissions of 27.1 (±32) g CO2e m−2 year−1. Compared to the rainfed system, the irrigated system had 45% more GHG emissions and 7% more C sequestration. The irrigation‐associated increase in soil N2O and fossil fuel emissions contributed 18% and 9%, respectively, to the system's total emissions in an average irrigation year. Groundwater degassing of CO2and N2O are missing components of previous assessments of the GHG cost of groundwater irrigation; together they were 4% of the irrigated system's total emissions. The irrigated system's net impact normalized by crop yield (GHG intensity) was +0.04 (±0.006) kg CO2e kg−1yield, close to that of the rainfed system, which was −0.03 (±0.002) kg CO2e kg−1yield. Thus, the increased crop yield resulting from irrigation can ameliorate overall GHG emissions if intensification by irrigation prevents land conversion emissions elsewhere, although the expansion of irrigation risks depletion of local water resources. 
    more » « less
  4. Abstract Global climate changes, especially the rise of global mean temperature due to the increased carbon dioxide (CO2) concentration, can, in turn, result in higher anthropogenic and biogenic greenhouse gas emissions. This potentially leads to a positive loop of climate–carbon feedback in the Earth’s climate system, which calls for sustainable environmental strategies that can mitigate both heat and carbon emissions, such as urban greening. In this study, we investigate the impact of urban irrigation over green spaces on ambient temperatures and CO2exchange across major cities in the contiguous United States. Our modeling results indicate that the carbon release from urban ecosystem respiration is reduced by evaporative cooling in humid climate, but promoted in arid/semi-arid regions due to increased soil moisture. The irrigation-induced environmental co-benefit in heat and carbon mitigation is, in general, positively correlated with urban greening fraction and has the potential to help counteract climate–carbon feedback in the built environment. 
    more » « less
  5. Abstract High fractions of variable renewable electricity generation have challenged grid management within the balancing authority overseen by the California’s Independent System Operator (CAISO). In the early evening, solar resources tend to diminish as the system approaches peak demand, putting pressure on fast-responding, emissions-intensive natural gas generators. While residential precooling, a strategy intended to shift the timing of air-conditioning usage from peak-demand periods to cheaper off-peak periods, has been touted in the literature as being effective for reducing peak electricity usage and costs, we explore its impact on CO2emissions in regional grids like CAISO that have large disparities in their daytime versus nighttime emissions intensities. Here we use EnergyPlus to simulate precooling in a typical U.S. single-family home in California climate zone 9 to quantify the impact of precooling on peak electricity usage, CO2emissions, and residential utility costs. We find that replacing a constant-setpoint cooling schedule with a precooling schedule can reduce peak period electricity consumption by 57% and residential electricity costs by nearly 13%, while also reducing CO2emissions by 3.5%. These results suggest the traditional benefits of precooling can be achieved with an additional benefit of reducing CO2emissions in grids with high daytime renewable energy penetrations. 
    more » « less