skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 6, 2026

Title: Observation of non-adiabatic Landau-Zener tunneling among Floquet states
Electromagnetic fields not only induce electronic transitions but also fundamentally modify the quantum states of matter through strong light-matter interactions. As one established route, Floquet engineering provides a powerful framework to dress electronic states with time-periodic fields, giving rise to quasi-stationary Floquet states. With increasing field strength, non-perturbative responses of the dressed states emerge, yet their nonlinear dynamics remain challenging to interpret. In this work we explore the emergence of non-adiabatic Landau-Zener transitions among Floquet states in Cu(111) under intense optical fields. At increasing field strength, we observe a transition from perturbative dressing to a regime where Floquet states undergo non-adiabatic tunneling, revealing a breakdown of adiabatic Floquet evolution. These insights are obtained through interferometrically time-resolved multi-photon photoemission spectroscopy, which serves as a sensitive probe of transient Floquet state dynamics. Numerical simulations and the theory of instantaneous Floquet states allow us to directly examine real-time excitation pathways in this non-perturbative photoemission regime. Our results establish a direct connection the onset of light-dressing of matter, non-perturbative ultrafast lightwave electronics, and high-optical-harmonic generation in the solids.  more » « less
Award ID(s):
2102601
PAR ID:
10637269
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
arXiv
Date Published:
Edition / Version:
1
Volume:
2025
Issue:
03
Page Range / eLocation ID:
04431
Subject(s) / Keyword(s):
nonadiabatic photoemission Landau-Zener tunneling Floquet engineering light-dressing of matter nonperturbative photoemission
Format(s):
Medium: X Size: 5.7MB Other: pdf
Size(s):
5.7MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Interactions of quantum materials with strong laser fields can induce exotic non-equilibrium electronic states. Monolayer transition metal dichalcogenides, a new class of direct-gap semiconductors with prominent quantum confinement, offer exceptional opportunities for the Floquet engineering of excitons, which are quasiparticle electron–hole correlated states8. Strong-field driving has the potential to achieve enhanced control of the electronic band structure and thus the possibility of opening a new realm of exciton light–matter interactions. However, a full characterization of strong-field driven exciton dynamics has been difficult. Here we use mid-infrared laser pulses below the optical bandgap to excite monolayer tungsten disulfide and demonstrate strong-field light dressing of excitons in excess of a hundred millielectronvolts. Our high-sensitivity transient absorption spectroscopy further reveals the formation of a virtual absorption feature below the 1s-exciton resonance, which we assign to a light-dressed sideband from the dark 2p-exciton state. Quantum-mechanical simulations substantiate the experimental results and enable us to retrieve real-space movies of the exciton dynamics. This study advances our understanding of the exciton dynamics in the strong-field regime, showing the possibility of harnessing ultrafast, strong-field phenomena in device applications of two-dimensional materials. 
    more » « less
  2. As conventional electronic materials approach their physical limits, the application of ultrafast optical fields to access transient states of matter cap- tures imagination. The inversion symmetry governs the optical parity selection rule, differentiating between accessible and inaccessible states of matter. To circumvent parity-forbidden transitions, the common practice is to break the inversion symmetry by material design or external fields. Here we report how the application of femtosecond ultraviolet pulses can energize a parity-forbidden dark exciton state in black phosphorus while maintaining its intrinsic material symmetry. Unlike its conventional bandgap absorption in visible-to-infrared, femtosecond ultraviolet excitation turns on efficient Coulomb scattering, promoting carrier multiplication and electronic heating to ~3000 K, and consequently populating its parity-forbidden states. Interfero- metric time- and angle-resolved two-photon photoemission spectroscopy reveals dark exciton dynamics of black phosphorus on ~100 fs time scale and its anisotropic wavefunctions in energy-momentum space, illuminating its potential applications in optoelectronics and photochemistry under ultraviolet optical excitation. 
    more » « less
  3. Abstract Optical antenna resonators enable control of light‐matter interactions on the nano‐scale via electron–photon hybrid states in strong coupling. Specifically, mid‐infrared (MIR) nano‐antennas coupled to saturable intersubband transitions in multi‐quantum‐well (MQW) semiconductor heterostructures allow for the coupling strength to be tuned through antenna resonance and field intensity. Here, tip‐enhanced nano‐scale variation of antenna‐MQW coupling across the antenna is demonstrated, with a spatially‐dependent coupling strength varying from 73 (strong coupling) to 24 (weak coupling). This behavior is modeled based on the spatially dependent local constructive and destructive interference between tip and antenna fields. Using a quantum‐mechanical density‐matrix model of the MQW system with its designed values of transition dipole moment, doping density, and population decay time, the picosecond IR pulse coupling to intersubband transitions and the associated tip induced strong‐field saturation effects are described. These results present a new regime of nonlinear IR light‐matter control based on the dynamic manipulation of quantum hybrid states on the nanoscale and in the infrared, with a perspective regarding extension to molecular vibrations. 
    more » « less
  4. Light is a preeminent spectroscopic tool for investigating the electronic structure of surfaces. Time-resolved photoelectron spectroscopy has mainly been developed in the last 30 years. It is therefore not surprising that the topic was hardly mentioned in the issue on ‘‘The first thirty years’’ of surface science. In the second thirty years, however, we have seen tremendous progress in the development of time-resolved photoelectron spectroscopy on surfaces. Femtosecond light pulses and advanced photoelectron detection schemes are increasingly being used to study the electronic structure and dynamics of occupied and unoccupied electronic states and dynamic processes such as the energy and momentum relaxation of electrons, charge transfer at interfaces and collective processes such as plasmonic excitation and optical field screening. Using spin- and time-resolved photoelectron spectroscopy, we were able to study ultrafast spin dynamics, electron–magnon scattering and spin structures in magnetic and topological materials. Light also provides photon energy as well as electric and magnetic fields that can influence molecular surface processes to steer surface photochemistry and hot-electron-driven catalysis. In addition, we can consider light as a chemical reagent that can alter the properties of matter by creating non-equilibrium states and ultrafast phase transitions in correlated materials through the coupling of electrons, phonons and spins. Electric fields have also been used to temporarily change the electronic structure. This opened up new methods and areas such as high harmonic generation, light wave electronics and attosecond physics. This overview certainly cannot cover all these interesting topics. But also as a testimony to the cohesion and constructive exchange in our ultrafast community, a number of colleagues have come together to share their expertise and views on the very vital field of dynamics at surfaces. 
    more » « less
  5. Warm dense matter is a material state in the region of parameter space connecting condensed matter to classical plasma physics. In this intermediate regime, we investigate the significance of non-adiabatic electron-ion interactions upon ion dynamics. To disentangle non-adiabatic from adiabatic electron-ion interactions, we compare the ion self-diffusion coefficient from the non-adiabatic electron force field computational model with an adiabatic, classical molecular dynamics simulation. A classical pair potential developed through a force-matching algorithm ensures the only difference between the models is due to the electronic inertia. We implement this new method to characterize non-adiabatic effects on the self-diffusion of warm dense hydrogen over a wide range of temperatures and densities. Ultimately we show that the impact of non-adiabatic effects is negligible for equilibrium ion dynamics in warm dense hydrogen. This article is part of the theme issue ‘Dynamic and transient processes in warm dense matter’. 
    more » « less