Optical cavities can enhance and control light-matter interactions. This level of control has recently been extended to the nanoscale with single emitter strong coupling even at room temperature using plasmonic nanostructures. However, emitters in static geometries, limit the ability to tune the coupling strength or to couple different emitters to the same cavity. Here, we present tip-enhanced strong coupling (TESC) with a nanocavity formed between a scanning plasmonic antenna tip and the substrate. By reversibly and dynamically addressing single quantum dots, we observe mode splitting up to 160 meV and anticrossing over a detuning range of ~100 meV, and with subnanometer precision over the deep subdiffraction-limited mode volume. Thus, TESC enables previously inaccessible control over emitter-nanocavity coupling and mode volume based on near-field microscopy. This opens pathways to induce, probe, and control single-emitter plasmon hybrid quantum states for applications from optoelectronics to quantum information science at room temperature.
more »
« less
Tip‐Enhanced Imaging and Control of Infrared Strong Light‐Matter Interaction
Abstract Optical antenna resonators enable control of light‐matter interactions on the nano‐scale via electron–photon hybrid states in strong coupling. Specifically, mid‐infrared (MIR) nano‐antennas coupled to saturable intersubband transitions in multi‐quantum‐well (MQW) semiconductor heterostructures allow for the coupling strength to be tuned through antenna resonance and field intensity. Here, tip‐enhanced nano‐scale variation of antenna‐MQW coupling across the antenna is demonstrated, with a spatially‐dependent coupling strength varying from 73 (strong coupling) to 24 (weak coupling). This behavior is modeled based on the spatially dependent local constructive and destructive interference between tip and antenna fields. Using a quantum‐mechanical density‐matrix model of the MQW system with its designed values of transition dipole moment, doping density, and population decay time, the picosecond IR pulse coupling to intersubband transitions and the associated tip induced strong‐field saturation effects are described. These results present a new regime of nonlinear IR light‐matter control based on the dynamic manipulation of quantum hybrid states on the nanoscale and in the infrared, with a perspective regarding extension to molecular vibrations.
more »
« less
- Award ID(s):
- 2108009
- PAR ID:
- 10522493
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Laser & Photonics Reviews
- ISSN:
- 1863-8880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The advent of layered materials has unveiled new opportunities for tailoring electromagnetic waves at the subwavelength scale, particularly through the study of polaritons, a hybrid light–matter excitation. In this context, twist-optics, which investigates the optical properties of twisted stacks of van der Waals (vdW) layered specimens, has emerged as a powerful tool. Here, we explore the tunability of phonon polaritons in α-V2O5via interlayer twisting using scanning nano-infrared (IR) imaging. We show that the polaritonic response can be finely adjusted by varying their interlayer electromagnetic coupling, allowing for precise control over the propagation direction and phase transition from open unidirectional iso-frequency contours to closed elliptic geometries. Our experimental results, in conjugate with theoretical modeling, reveal the mechanisms underpinning this tunability, highlighting the role of twist-induced nano-light modifications for advanced nanophotonic control at the nanoscale.more » « less
-
Abstract Quantum state control of two‐level emitters is fundamental for many information processing, metrology, and sensing applications. However, quantum‐coherent photonic control of solid‐state emitters has traditionally been limited to cryogenic environments, which are not compatible with implementation in scalable, broadly distributed technologies. In contrast, plasmonic nano‐cavities with deep sub‐wavelength mode volumes have recently emerged as a path toward room temperature quantum control. However, optimization, control, and modeling of the cavity mode volume are still in their infancy. Here recent demonstrations of plasmonic tip‐enhanced strong coupling (TESC) with a configurable nano‐tip cavity are extended to perform a systematic experimental investigation of the cavity‐emitter interaction strength and its dependence on tip position, augmented by modeling based on both classical electrodynamics and a quasinormal mode framework. Based on this work, a perspective for nano‐cavity optics is provided as a promising tool for room temperature control of quantum coherent interactions that could spark new innovations in fields from quantum information and quantum sensing to quantum chemistry and molecular opto‐mechanics.more » « less
-
Razeghi, Manijeh; Khodaparast, Giti A.; Vitiello, Miriam S. (Ed.)Band structure, strain, and polarization engineering of nitride heterostructures open unparalleled opportunities for quantum sensing in the infrared. Intersubband absorption and photoluminescence are employed to correlate structure with optical properties of nonpolar strain-balanced InGaN/AlGaN nanostructures grown by molecular-beam epitaxy. Mid-infrared intersubband transitions in m-plane (In)AlxGa1-xN/In0.16Ga0.84N (0.19x0.3) multi-quantum wells were observed for the first time in the range of 3.4-5.1 μm (244-360 meV). Direct and attenuated total-reflection infrared absorption measurements are interpreted using structural information revealed by high-resolution x-ray diffraction and transmission electron microanalysis. The experimental intersubband energies are better reproduced by calculations using the local-density approximation than the Hartree-Fock approximation for the exchange-correlation correction. The effect of charge density, quantum well width, and barrier alloy composition on the intersubband transition energy was examined to evaluate the potential of this material for practical infrared applications. Temperature-dependent continuous-wave and time-resolved photoluminescence (TRPL) measurements are also investigated to probe carrier localization and recombination in m-plane InGaN/AlGaN quantum wells. Average localization depths of 21 meV and 40 meV were estimated for the undoped and doped structures, respectively. Using TRPL, dual localization centers were identified in undoped structures, while a single type of localization centers was found in doped structures. At 2 K, a fast decay time of approximately 0.3ns was measured for both undoped and doped structures, while a longer decay time of 2.2 ns was found only for the undoped sample. TRPL in magnetic field was explored to examine the effect of doping sheets on carrier dynamics.more » « less
-
Strong coupling between light and elementary excitations is emerging as a powerful tool to engineer the properties of solid-state systems. Spin-correlated excitations that couple strongly to optical cavities promise control over collective quantum phenomena such as magnetic phase transitions, but their suitable electronic resonances are yet to be found. Here, we report strong light–matter coupling in NiPS3, a van der Waals antiferromagnet with highly correlated electronic degrees of freedom. A previously unobserved class of polaritonic quasiparticles emerges from the strong coupling between its spin-correlated excitons and the photons inside a microcavity. Detailed spectroscopic analysis in conjunction with a microscopic theory provides unique insights into the origin and interactions of these exotic magnetically coupled excitations. Our work introduces van der Waals magnets to the field of strong light–matter physics and provides a path towards the design and control of correlated electron systems via cavity quantum electrodynamics.more » « less
An official website of the United States government
