Abstract Type Ia supernovae (SNe Ia) are thermonuclear explosions of degenerate white dwarf stars destabilized by mass accretion from a companion star 1 , but the nature of their progenitors remains poorly understood. A way to discriminate between progenitor systems is through radio observations; a non-degenerate companion star is expected to lose material through winds 2 or binary interaction 3 before explosion, and the supernova ejecta crashing into this nearby circumstellar material should result in radio synchrotron emission. However, despite extensive efforts, no type Ia supernova (SN Ia) has ever been detected at radio wavelengths, which suggests a clean environment and a companion star that is itself a degenerate white dwarf star 4,5 . Here we report on the study of SN 2020eyj, a SN Ia showing helium-rich circumstellar material, as demonstrated by its spectral features, infrared emission and, for the first time in a SN Ia to our knowledge, a radio counterpart. On the basis of our modelling, we conclude that the circumstellar material probably originates from a single-degenerate binary system in which a white dwarf accretes material from a helium donor star, an often proposed formation channel for SNe Ia (refs.  6,7 ). We describe how comprehensive radio follow-up of SN 2020eyj-like SNe Ia can improve the constraints on their progenitor systems. 
                        more » 
                        « less   
                    This content will become publicly available on July 9, 2026
                            
                            A Gravitational-wave-detectable Candidate Type Ia Supernova Progenitor
                        
                    
    
            Abstract Type Ia supernovae (SNe Ia), critical for studying cosmic expansion, arise from thermonuclear explosions of white dwarfs, but their precise progenitor pathways remain unclear. Growing evidence supports the “double-degenerate scenario,” where two white dwarfs interact. The absence of nondegenerate companions capable of explaining the observed SN Ia rate, along with observations of hypervelocity white dwarfs, interpreted as surviving companions of such systems, provide compelling evidence for this scenario. Upcoming millihertz gravitational-wave observatories like the Laser Interferometer Space Antenna (LISA) are expected to detect thousands of double-degenerate systems, though the most compact known candidate SN Ia progenitors produce marginally detectable signals. Here, we report observations of ATLAS J1138-5139, a binary white dwarf system with an orbital period of just 28 minutes. Our analysis reveals a 1M☉carbon–oxygen white dwarf accreting from a high-entropy helium-core white dwarf. Given its mass, the accreting carbon–oxygen white dwarf is poised to trigger a typical-luminosity SN Ia within a few million years, to evolve into a stably transferring AM Canum Venaticorum (or AM CVn) system, or undergo a merger into a massive white dwarf. ATLAS J1138-5139 provides a rare opportunity to calibrate binary evolution models by directly comparing observed orbital parameters and mass-transfer rates closer to merger than any known SN Ia progenitor. Its compact orbit ensures detectability by LISA, demonstrating the potential of millihertz gravitational-wave observatories to reveal a population of SN Ia progenitors on a Galactic scale, paving the way for multimessenger studies offering insights into the origins of these cosmologically significant explosions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2307436
- PAR ID:
- 10637283
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 987
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 206
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT The progenitor systems and explosion mechanism of Type Ia supernovae are still unknown. Currently favoured progenitors include double-degenerate systems consisting of two carbon-oxygen white dwarfs with thin helium shells. In the double-detonation scenario, violent accretion leads to a helium detonation on the more massive primary white dwarf that turns into a carbon detonation in its core and explodes it. We investigate the fate of the secondary white dwarf, focusing on changes of the ejecta and observables of the explosion if the secondary explodes as well rather than survives. We simulate a binary system of a $$1.05\, \mathrm{M_\odot }$$ and a $$0.7\, \mathrm{M_\odot }$$ carbon-oxygen white dwarf with $$0.03\, \mathrm{M_\odot }$$ helium shells each. We follow the system self-consistently from inspiral to ignition, through the explosion, to synthetic observables. We confirm that the primary white dwarf explodes self-consistently. The helium detonation around the secondary white dwarf, however, fails to ignite a carbon detonation. We restart the simulation igniting the carbon detonation in the secondary white dwarf by hand and compare the ejecta and observables of both explosions. We find that the outer ejecta at $$v~\gt ~15\, 000$$ km s−1 are indistinguishable. Light curves and spectra are very similar until $$\sim ~40 \ \mathrm{d}$$ after explosion and the ejecta are much more spherical than violent merger models. The inner ejecta differ significantly slowing down the decline rate of the bolometric light curve after maximum of the model with a secondary explosion by ∼20 per cent. We expect future synthetic 3D nebular spectra to confirm or rule out either model.more » « less
- 
            ABSTRACT The observed diversity in Type Ia supernovae (SNe Ia) – the thermonuclear explosions of carbon–oxygen white dwarf stars used as cosmological standard candles – is currently met with a variety of explosion models and progenitor scenarios. To help improve our understanding of whether and how often different models contribute to the occurrence of SNe Ia and their assorted properties, we present a comprehensive analysis of seven nearby SNe Ia. We obtained one to two epochs of optical spectra with Gemini Observatory during the nebular phase (>200 d past peak) for each of these events, all of which had time series of photometry and spectroscopy at early times (the first ∼8 weeks after explosion). We use the combination of early- and late-time observations to assess the predictions of various models for the explosion (e.g. double-detonation, off-centre detonation, stellar collisions), progenitor star (e.g. ejecta mass, metallicity), and binary companion (e.g. another white dwarf or a non-degenerate star). Overall, we find general consistency in our observations with spherically symmetric models for SN Ia explosions, and with scenarios in which the binary companion is another degenerate star. We also present an in-depth analysis of SN 2017fzw, a member of the subgroup of SNe Ia which appear to be transitional between the subluminous ‘91bg-like’ events and normal SNe Ia, and for which nebular-phase spectra are rare.more » « less
- 
            The non-detection of companion stars in Type Ia supernova (SN) progenitor systems lends support to the notion of double-degenerate (DD) systems and explosions triggered by the merging of two white dwarfs. This very asymmetric process should lead to a conspicuous polarimetric signature. By contrast, observations consistently find very low continuum polarization as the signatures from the explosion process largely dominate over the pre-explosion configuration within several days. Critical information about the interaction of the ejecta with a companion and any circumstellar matter is encoded in the early polarization spectra. In this study, we obtain spectropolarimetry of SN\,2018gv with the ESO Very Large Telescope at − 13.6 days relative to the B−band maximum light, or ∼ 5 days after the estimated explosion --- the earliest spectropolarimetric observations to date of any Type Ia SN. These early observations still show a low continuum polarization ( ≲ 0.2\%) and moderate line polarization (0.30 ± 0.04\% for the prominent \ion{Si}{2} λ6355 feature and 0.85 ± 0.04\% for the high-velocity Ca component). The high degree of spherical symmetry implied by the low line and continuum polarization at this early epoch is consistent with explosion models of delayed detonations and is inconsistent with the merger-induced explosion scenario. The dense UV and optical photometry and optical spectroscopy within the first ∼ 100 days after the maximum light indicate that SN\,2018gv is a normal Type Ia SN with similar spectrophotometric behavior to SN\,2011fe.more » « less
- 
            The formation channels and predicted populations of double white dwarfs (DWDs) are important because a subset will evolve to be gravitational-wave sources and/or progenitors of Type Ia supernovae. Given the observed population of short-period DWDs, we calculate the outcomes of common envelope (CE) evolution when convective effects are included. For each observed white dwarf (WD) in a DWD system, we identify all progenitor stars with an equivalent proto-WD core mass from a comprehensive suite of stellar evolution models. With the second observed WD as the companion, we calculate the conditions under which convection can accommodate the energy released as the orbit decays, including (if necessary) how much the envelope must spin-up during the CE phase. The predicted post-CE final separations closely track the observed DWD orbital parameter space, further strengthening the view that convection is a key ingredient in CE evolution.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
