Abstract Studying the abundances in metal-poor globular clusters is crucial for understanding the formation of the Galaxy and the nucleosynthesis processes in the early Universe. We observed 13 red-giant stars from the metal-poor globular cluster NGC 2298 using the newly commissioned GHOST spectrograph at Gemini South. We derived stellar parameters and abundances for 36 species across 32 elements, including 16 neutron-capture elements. We find that the stars exhibit chemical anomalies among the light elements, allowing us to classify them into first generation (eight stars) and second generation (five stars). We derive a mean cluster metallicity of [Fe/H] = −1.98 ± 0.10 with no significant variation among cluster members. Mostα- and Fe-peak elements display low star-to-star abundance dispersion, with notable exceptions for Sc, Ni, and Zn for which the dispersions in Sc vary significantly between stars from different generations to 2σlevels. Similarly, among the neutron-capture elements, we observed considerable differences in dispersion for Sr and Eu among the first and second generation stars to 2σlevels. We also confirm an intrinsic scatter beyond observational uncertainties for several elements using a maximum likelihood approach among stars from different generations. Additionally, we note an increase in [Sr/Eu] and [Ba/Eu] with [Mg/Fe] in first-generation stars indicating correlations between the productions of lightrprocess and Mg. We find the universalr-process pattern, but with larger dispersions in the mainrprocess than the limited-relements. These differences in abundance dispersion, among first- and second-generation stars in NGC 2298, suggest complex and inhomogeneous early chemical enrichment processes, driven by contributions from multiple nucleosynthetic events, including massive stars and rarer-process events.
more »
« less
The R-process Alliance: Fifth Data Release from the Search for R-process-enhanced Metal-poor Stars in the Galactic Halo with the GTC*
Abstract Understanding the abundance pattern of metal-poor stars and the production of heavy elements through various nucleosynthesis processes offers crucial insights into the chemical evolution of the Milky Way, revealing primary sites and major sources of rapid neutron-capture process (r-process) material in the Universe. In this fifth data release from theR-Process Alliance (RPA), we present the detailed chemical abundances of 41 faint (down toV= 15.8) and extremely metal-poor (down to [Fe/H] = −3.3) halo stars selected from the RPA. We obtained high-resolution spectra for these objects with the HORuS spectrograph on the Gran Telescopio Canarias. We measure the abundances of light,α, Fe-peak, and neutron-capture elements. We report the discovery of five carbon-enhanced metal-poor, one limited-r, threer-I, and fourr-II stars, and six Mg-poor stars. We also identify one star of a possible globular cluster origin at an extremely low metallicity at [Fe/H] = −3.0. This adds to the growing evidence of a lower-limit metallicity floor for globular cluster abundances. We use the abundances of Fe-peak elements and theα-elements to investigate the contributions from different nucleosynthesis channels in the progenitor supernovae. We find the distribution of [Mg/Eu] as a function of [Fe/H] to have different enrichment levels, indicating different possible pathways and sites of their production. We also reveal differences in the trends of the neutron-capture element abundances of Sr, Ba, and Eu of variousr-I andr-II stars from the RPA data releases, which provide constraints on their nucleosynthesis sites and subsequent evolution.
more »
« less
- PAR ID:
- 10637299
- Publisher / Repository:
- Astrophysical Journal Supplements
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 274
- Issue:
- 2
- ISSN:
- 0067-0049
- Page Range / eLocation ID:
- 39
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dwarf galaxies like Sagittarius (Sgr) provide a unique window into the early stages of galactic chemical evolution, particularly through their metal-poor stars. By studying the chemical abundances of stars in the Sgr core and tidal streams, we can gain insights into the assembly history of this galaxy and its early heavy element nucleosynthesis processes. We efficiently selected extremely metal-poor candidates in the core and streams for high-resolution spectroscopic analysis using metallicity-sensitive photometry from SkyMapper DR2 and Gaia DR3 XP spectra, and proper motions. We present a sample of 37 Sgr stars with detailed chemical abundances, of which we identify 10 extremely metal-poor ([Fe/H] ≤ −3.0) stars, 25 very metal-poor ([Fe/H] ≤ −2.0) stars, and two metal-poor ([Fe/H] ≤ −1.0) stars. This sample increases the number of extremely metal-poor Sgr stars analyzed with high-resolution spectroscopy by a factor of 5. Of these stars, 15 are identified as members of the Sgr tidal stream, while the remaining 22 are associated with the core. We derive abundances for up to 20 elements and identify no statistically significant differences between the element abundance patterns across the core and stream samples. Intriguingly, we identify stars that may have formed in ultrafaint dwarf galaxies that accreted onto Sgr, in addition to patterns of C andr-process elements distinct from the Milky Way halo. Over half of the sample shows a neutron-capture element abundance pattern consistent with the scaled solar purer-process pattern, indicating earlyr-process enrichment in the Sgr progenitor.more » « less
-
Context. Over the past few years, theR-Process Alliance (RPA) has successfully carried out a search for stars that are highly enhanced in elements produced via the rapid neutron-capture (r-) process. In particular, the RPA has identified a number of relatively bright, highlyr-process-enhanced (r-II) stars, suitable for observations with the Hubble Space Telescope (HST), facilitating abundance derivation of elements such as gold (Au) and cadmium (Cd). Aims. This paper presents the detailed abundances derived for the metal-poor ([Fe/H] = −2.55) highlyr-process-enhanced ([Eu/Fe] = +1.29)r-II star 2MASS J05383296–5904280. Methods. One-dimensional local thermodynamic equilibrium (LTE) elemental abundances were derived via equivalent width and spectral synthesis using high-resolution high signal-to-noise near-UV HST/STIS and optical Magellan/MIKE spectra. Results. Abundances were determined for 43 elements, including 26 neutron-capture elements. In particular, abundances of the rarely studied elements Nb, Mo, Cd, Lu, Os, Pt, and Au are derived from the HST spectrum. These results, combined with RPA near-UV observations of two additionalr-II stars, increase the number of Cd abundances derived forr-process-enriched stars from seven to ten and Au abundances from four to seven. A large star-to-star scatter is detected for both of these elements, highlighting the need for more detections enabling further investigations, specifically into possible non-LTE effects.more » « less
-
Abstract We present the stellar parameters and chemical abundances of 30 elements for five stars located at large radii (3.5–10.7 times the half-light radius) in the Sextans dwarf spheroidal galaxy. We selected these stars using proper motions, radial velocities, and metallicities, and we confirm them as metal-poor members of Sextans with −3.34 ≤ [Fe/H] ≤ −2.64 using high-resolution optical spectra collected with the Magellan Inamori Kyocera Echelle spectrograph. Four of the five stars exhibit normal abundances of C (−0.34 ≤ [C/Fe] ≤ + 0.36), mild enhancement of theαelements Mg, Si, Ca, and Ti ([α/Fe] = +0.12 ± 0.03), and unremarkable abundances of Na, Al, K, Sc, V, Cr, Mn, Co, Ni, and Zn. We identify three chemical signatures previously unknown among stars in Sextans. One star exhibits large overabundances ([X/Fe] > +1.2) of C, N, O, Na, Mg, Si, and K, and large deficiencies of heavy elements ([Sr/Fe] = −2.37 ± 0.25, [Ba/Fe] = −1.45 ± 0.20, [Eu/Fe] < + 0.05), establishing it as a member of the class of carbon-enhanced metal-poor stars with no enhancement of neutron-capture elements. Three stars exhibit moderate enhancements of Eu (+0.17 ≤ [Eu/Fe] ≤ + 0.70), and the abundance ratios among 12 neutron-capture elements are indicative ofr-process nucleosynthesis. Another star is highly enhanced in Sr relative to heavier elements ([Sr/Ba] = +1.21 ± 0.25). These chemical signatures can all be attributed to massive, low-metallicity stars or their end states. Our results, the first for stars at large radius inSextans, demonstrate that these stars were formed in chemically inhomogeneous regions, such as those found in ultra-faint dwarf galaxies.more » « less
-
null (Ed.)Context. NGC 6522 is a moderately metal-poor bulge globular cluster ([Fe/H]∼−1.0), and it is a well-studied representative among a number of moderately metal-poor blue horizontal branch clusters located in the bulge. The NGC 6522 abundance pattern can give hints on the earliest chemical enrichment in the central Galaxy. Aims. The aim of this study is to derive abundances of the light elements C and N; alpha elements O, Mg, Si, Ca, and Ti; odd-Z elements Na and Al; neutron-capture elements Y, Zr, Ba, La, and Nd; and the r-process element Eu. We verify if there are first- and second-generation stars: we find clear evidence of Na-Al, Na-N, and Mg-Al correlations, while we cannot identify the Na-O anti-correlation from our data. Methods. High-resolution spectra of six red giants in the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with both the UVES and GIRAFFE spectrographs in FLAMES+UVES configuration. In light of Gaia data, it turned out that two of them are non-members, but these were also analysed. Spectroscopic parameters were derived through the excitation and ionisation equilibrium of Fe i and Fe ii lines from UVES spectra. The abundances were obtained with spectrum synthesis. Comparisons of abundances derived from UVES and GIRAFFE spectra were carried out. Results. The present analysis combined with previous UVES results gives a mean radial velocity of vhel = −15.62±7.7 km s−1 and a r metallicity of [Fe/H] = −1.05±0.20 for NGC 6522. Mean abundances of alpha elements for the present four member stars are enhanced with [O/Fe]=+0.38, [Mg/Fe]=≈+0.28, [Si/Fe]≈+0.19, and [Ca/Fe]≈+0.13, together with the iron-peak element [Ti/Fe]≈+0.13, and the r-process element [Eu/Fe]=+0.40. The neutron-capture elements Y, Zr, Ba, and La show enhancements in the +0.08 < [Y/Fe] < +0.90, 0.11 < [Zr/Fe] < +0.50, 0.00 < [Ba/Fe] < +0.63, 0.00 < [La/Fe] < +0.45, and -0.10 < [Nd/Fe] < +0.70 ranges. We also discuss the spread in heavy-element abundances.more » « less
An official website of the United States government

