skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genetically and Functionally Distinct Immunoglobulin Heavy Chain Locus Duplication in Bats
Abstract The genetic locus encoding immunoglobulin heavy chains (IgH) is critical for vertebrate humoral immune responses and diverse antibody repertoires. Immunoglobulin and T cell receptor loci of most bat species have not been annotated, despite the recurrent role of bats as viral reservoirs and sources of zoonotic pathogens. We investigated the genetic structure and function of IgH loci across the largest bat family, Vespertilionidae, focusing on big brown bats(Eptesicus fuscus). We discovered thatE. fuscusand ten other species within Vespertilionidae have two complete, functional, and distinct immunoglobulin heavy chain loci on separate chromosomes. This locus organization is previously unknown in mammals, but is reminiscent of more limited duplicated loci in teleost fish. Single cell transcriptomic data validate functional rearrangement and expression of immunoglobulin heavy chains of both loci in the expressed repertoire ofEptesicus fuscus, with maintenance of allelic exclusion, bias of usage toward the smaller and more compact IgH locus, and evidence of differential selection of antigen-experienced B cells and plasma cells varying by IgH locus use. This represents a unique mechanism for mammalian humoral immunity and may contribute to bat resistance to viral pathogenesis.  more » « less
Award ID(s):
2032157
PAR ID:
10637334
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary We generated a highly-contiguous, annotated genome of the Jamaican fruit bat,Artibeus jamaicensis,including annotated germline immunoglobulin heavy chain (IGH) and light chain (IGL) loci to understand bat B cell receptor repertoires. The bat germline shares many structures and features described in human immunoglobulin loci. However, some features are unique toA. jamaicensis, including an expansion of cysteine-rich IGHV genes. To investigate the relationship between the germline IGH locus and expressed B cell receptors (BCRs), we sequenced the BCRs of wild-caught and captiveA. jamaicensis, finding an enrichment of IGHV3 and IGHV4 genes. Compared to humans,A. jamaicensishad shorter CDRH3s and lower levels of somatic hypermutation. Our results demonstrate that while immunoglobulin loci are largely conserved between bats and humans, distinct differences exist in the bat germline, highlighting the need for more detailed genetic characterization of these mammals. 
    more » « less
  2. Ding, Xia (Ed.)
    ABSTRACT The skin microbiome is an essential line of host defense against pathogens, yet our understanding of microbial communities and how they change when hosts become infected is limited. We investigated skin microbial composition in three North American bat species (Myotis lucifugus,Eptesicus fuscus, andPerimyotis subflavus) that have been impacted by the infectious disease, white-nose syndrome, caused by an invasive fungal pathogen,Pseudogymnoascus destructans. We compared bacterial and fungal composition from 154 skin swab samples and 70 environmental samples using a targeted 16S rRNA and internal transcribed spacer amplicon approach. We found that forM. lucifugus, a species that experiences high mortality from white-nose syndrome, bacterial microbiome diversity was dramatically lower whenP. destructanswas present. Key bacterial families—including those potentially involved in pathogen defense—significantly differed in abundance in bats infected withP. destructanscompared to uninfected bats. However, skin bacterial diversity was not lower inE. fuscusorP. subflavuswhenP. destructanswas present despite populations of the latter species declining sharply from white-nose syndrome. The fungal species present on bats substantially overlapped with the fungal taxa present in the environment at the site where the bat was sampled, but fungal community composition was unaffected by the presence ofP. destructansfor any of the three bat species. This species-specific alteration in bat skin bacterial microbiomes after pathogen invasion may suggest a mechanism for the severity of white-nose syndrome inM. lucifugusbut not for other bat species impacted by the disease. IMPORTANCEInherent complexities in the composition of microbiomes can often preclude investigations of microbe-associated diseases. Instead of single organisms being associated with disease, community characteristics may be more relevant. Longitudinal microbiome studies of the same individual bats as pathogens arrive and infect a population are the ideal experiment but remain logistically challenging; therefore, investigations like our approach that are able to correlate invasive pathogens to alterations within a microbiome may be the next best alternative. The results of this study potentially suggest that microbiome-host interactions may determine the likelihood of infection. However, the contrasting relationship between Pd and the bacterial microbiomes ofMyotis lucifugusandPerimyotis subflavusindicate that we are just beginning to understand how the bat microbiome interacts with a fungal invader such as Pd. 
    more » « less
  3. Echolocating bats and their eared insect prey are in an acoustic evolutionary war. Moths produce anti-bat sounds that startle bat predators, signal noxiousness, mimic unpalatable models and jam bat sonar. Tiger beetles (Cicindelidae) also purportedly produce ultrasound in response to bat attacks. Here we tested 19 tiger beetle species from seven genera and showed that they produce anti-bat signals to playback of authentic bat echolocation. The dominant frequency of beetle sounds substantially overlaps the sonar calls of sympatric bats. As tiger beetles are known to produce defensive chemicals such as benzaldehyde and hydrogen cyanide, we hypothesized that tiger beetle sounds are acoustically advertising their unpalatability. We presented captive big brown bats (Eptesicus fuscus) with seven different tiger beetle species and found that 90 out of 94 beetles were completely consumed, indicating that these tiger beetle species are not aposematically signalling. Instead, we show that the primary temporal and spectral characteristics of beetle warning sounds overlap with sympatric unpalatable tiger moth (Arctinae) sounds and that tiger beetles are probably Batesian mimics of noxious moth models. We predict that many insect taxa produce anti-bat sounds and that the acoustic mimicry rings of the night sky are hyperdiverse. 
    more » « less
  4. Hearing mediates many behaviours critical for survival in echolocating bats, including foraging and navigation. Although most mammals are susceptible to progressive age-related hearing loss, the evolution of biosonar, which requires the ability to hear low-intensity echoes from outgoing sonar signals, may have selected against the development of hearing deficits in bats. Many echolocating bats exhibit exceptional longevity and rely on acoustic behaviours for survival to old age; however, relatively little is known about the ageing bat auditory system. In this study, we used DNA methylation to estimate the ages of wild-caught big brown bats (Eptesicus fuscus) and measured hearing sensitivity in young and ageing bats using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). We found no evidence for hearing deficits in bats up to 12.5 years of age, demonstrated by comparable thresholds and similar ABR and DPOAE amplitudes across age groups. We additionally found no significant histological evidence for cochlear ageing, with similar hair cell counts, afferent and efferent innervation patterns in young and ageing bats. Here, we demonstrate that big brown bats show minimal evidence for age-related hearing loss and therefore represent informative models for investigating mechanisms that may preserve hearing function over a long lifetime. 
    more » « less
  5. Several bat species act as asymptomatic reservoirs for many viruses that are highly pathogenic in other mammals. Here, we have characterized the functional diversification of the protein kinase R (PKR), a major antiviral innate defense system. Our data indicate that PKR has evolved under positive selection and has undergone repeated genomic duplications in bats in contrast to all studied mammals that have a single copy of the gene. Functional testing of the relationship between PKR and poxvirus antagonists revealed how an evolutionary conflict with ancient pathogenic poxviruses has shaped a specific bat host-virus interface. We determined that duplicated PKRs of theMyotisspecies have undergone genetic diversification, allowing them to collectively escape from and enhance the control of DNA and RNA viruses. These findings suggest that viral-driven adaptations in PKR contribute to modern virus-bat interactions and may account for bat-specific immunity. 
    more » « less