skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Measurement report: A comparative analysis of an intensive incursion of fluorescing African dust particles over Puerto Rico and another over Spain
Abstract. Measurements during episodes of African dust, made with two wideband integrated bioaerosol spectrometers (WIBSs), one on the northeastern coast of Puerto Rico and the other in the city of León, Spain, show unmistakable, bioaerosol-like fluorescing aerosol particles (FAPs) that can be associated with these dust episodes. The Puerto Rico event occurred during a major incursion of African dust during June 2020. The León event occurred in the late winter and spring of 2022, when widespread, elevated layers of dust inundated the Iberian Peninsula. Satellite and back-trajectory analyses confirm that dust from northern Africa was the source of the particles during both events. The WIBSs measure the size of individual particles in the range from 0.5 to 30 µm, derive a shape factor, and classify seven types of fluorescence from the FAPs. In general, it is not possible to directly determine the specific biological identity from fluorescence signatures; however, measurements of these types of bioaerosols in laboratory studies allow us to compare ambient fluorescence patterns with whole microbial cells measured under controlled conditions. Here we introduce some new metrics that offer a more quantitative approach for comparing FAP characteristics derived from particles measured under different environmental conditions. The analysis highlights the similarities and differences at the two locations and reveals differences that can be attributed to the age and history of the dust plumes, e.g., the amount of time that the air masses were in the mixed layer and the frequency of precipitation along the air mass trajectory.  more » « less
Award ID(s):
1829297
PAR ID:
10637342
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
EGUsphere
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
25
Issue:
2
ISSN:
1680-7324
Page Range / eLocation ID:
843 to 865
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Measurements during episodes of African dust, made with two Wideband Integrated Bioaerosol Spectrometers (WIBS), one on the northeastern coast of Puerto Rico and the other in the city of León, Spain, show unmistakable, bioaerosol-like fluorescing aerosol particles (FAP) that can be associated with these dust episodes. The Puerto Rico events occurred during a major incursion of African dust during June 2020. The León events occurred in the late winter and spring of 2022 when widespread, elevated layers of dust inundated the Iberian Peninsula. Satellite and back trajectory analyses confirm that dust from Northern Africa was the source of the particles during both events. The WIBS measures the size of individual particles in the range from 0.5 µm to 30 µm, derives a shape factor and classifies seven types of fluorescence from the FAP. In general it is not possible to directly determine the specific biological identity from fluorescence signatures, however, measurements of these types of bioaerosols in laboratory studies allow us to compare ambient fluorescence patterns with whole microbial cells measured under controlled conditions. Here we introduce some new metrics that offer a more quantitative approach for comparing FAP characteristics derived from particles measured under different environmental conditions. The analysis highlights the similarities and differences at the two locations and reveals differences that can be attributed to the age and history of the dust plumes, e.g., the amount of time that the air masses were in the mixed layer and the frequency of precipitation along the air mass trajectory. 
    more » « less
  2. Abstract. Many atmospheric aerosols are cloud condensation nuclei (CCN), capable ofactivating as cloud droplets when the relative humidity exceeds 100 %.Some primary biological aerosol particles (PBAPs), such as plant spores,pollen, or bacteria, have been identified as such CCN. Urban environmentsare a source of these bioaerosols, some of which are naturally produced by thelocal flora or are transported from surrounding regions and others of whichare a result of human activities. In the latter case, open sewage, uncoveredgarbage, mold or other products of such activities can be a source of PBAPs.There have been relatively few studies, especially in the tropics, wherePBAPs and CCN have been simultaneously studied to establish a causal linkbetween the two. The metropolis of San Juan, Puerto Rico, is one such urbanarea with a population of 2 448 000 people (as of 2020). To betterunderstand the fluorescent characteristics and cloud-forming efficiency ofaerosols in this region, measurements with a wideband integrated bioaerosolspectrometer (WIBS), a condensation nuclei (CN) counter and a CCNspectrometer were made at the University of Puerto Rico – Río PiedrasCampus. Results show that the CCN / CN activation ratio and the fraction offluorescing aerosol particles (FAPs) have repetitive daily trends when theFAP fraction is positively correlated with relative humidity and negativelycorrelated with wind speed, consistent with previous studies of fungi sporescollected on substrates. The results from this pilot study highlight the capabilities ofultraviolet-induced fluorescence (UV-IF) measurements for characterizing theproperties of FAPs as they relate to the daily evolution of PBAPs. The use ofmultiple excitation and emission wavelengths, along with shape detection,allows the differentiation of different PBAP types. These measurements,evaluated with respect to previous, substrate-based analysis of the localfungal and pollen spores, have established a preliminary database ofmeasurements that future, longer-term studies will build upon. 
    more » « less
  3. Abstract. ​​​​​​​Each summer, the Saharan Air Layer (SAL) transports massive amounts of mineral dust across the Atlantic Ocean, affecting weather, climate, and public health over large areas. Despite the considerable impacts of African dust, the causes and impacts of extreme trans-Atlantic African dust events are not fully understood. The “Godzilla” trans-Atlantic dust event of 2020 has been extensively studied, but little is known about other similar events. Here, we examine the June 2015 event, the second strongest trans-Atlantic African dust event that occurred during the summers from 2003–2022. This event was characterized by moderately high dust emissions over western North Africa and an extremely high aerosol optical depth (AOD) over the tropical North Atlantic. The high dust loading over the Atlantic is associated with atmospheric circulation extremes similar to the Godzilla event. Both the African easterly jet (AEJ) and Caribbean low-level jet (CLLJ) have greatly intensified, along with a westward extension of the North Atlantic subtropical high (NASH), all of which favor the westward transport of African dust. The enhanced dust emissions are related to anomalously strong surface winds in dust source regions and reduced vegetation density and soil moisture across the northern Sahel. The dust plume reduced net surface shortwave radiation over the eastern tropical North Atlantic by about 25 W m−2 but increased net longwave flux by about 3 W m−2. In contrast to the Godzilla event, the 2015 event had minor air quality impacts on the US, partially due to the extremely intensified CLLJ that dispersed the dust plume towards the Pacific. 
    more » « less
  4. The number concentration and properties of aerosol particles serving as cloud condensation nuclei (CCN) are important for understanding cloud properties, including in the tropical Atlantic marine boundary layer (MBL), where marine cumulus clouds reflect incoming solar radiation and obscure the low-albedo ocean surface. Studies linking aerosol source, composition, and water uptake properties in this region have been conducted primarily during the summertime dust transport season, despite the region receiving a variety of aerosol particle types throughout the year. In this study, we compare size-resolved aerosol chemical composition data to the hygrocopicity parameter κ derived from size-resolved CCN measurements made during the Elucidating the Role of Clouds-Circulation Coupling in Climate (EUREC4A) and Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) campaigns from January to February 2020. We observed unexpected periods of wintertime long-range transport of African smoke and dust to Barbados. During these periods, the accumulation-mode aerosol particle and CCN Number concentrations as well as the proportions of dust and smoke particles increased, whereas average κ slightly decreased (κ = 0.46 +/- 0.10) from marine background conditions (κ = 0.52 +/- 0.09) when the particles were mostly composed of marine organics and sulfate. Size-resolved chemical analysis shows that smoke particles were the major contributor to the accumulation mode during long-range transport events, indicating that smoke is mainly responsible for the observed increase in CCN number concentrations. Earlier studies conducted at Barbados have mostly focused on the role of dust in CCN, but our results show that aerosol hygroscopicity and CCN number concentrations during wintertime long-range transport events over the tropical North Atlantic are also affected by African smoke. Our findings highlight the importance of African smoke for atmospheric processes and cloud formation over the Caribbean. In the file “Dust_Mass_Conc_Royer2022” dust mass concentrations in grams per meter^3 are provided for each day of sampling. These data were used to generate Figure 2a in the manuscript. The file “Particle_Type_#fract_Royer2022” contains data obtained through CCSEM/EDX analysis and used to generate the temporal chemistry plot (Figure 4) provided in the manuscript. The data contains particle numbers for each particle type identified on stage 3 of the sampler, total particle numbers analyzed for the entire stage 3 sample, as well as particle number fractions in % values. In the file “Size-resolved_chem_Royer2022” we provide particle # and number fraction (%) values used to generate size-resolved chemistry plots in the manuscript (Figures 5a and 5b). The file includes all particle numbers and number fractions for sea salt, aged sea salt, dust+sea salt, dust, dust+smoke, smoke, sulfate, and organic particles in each size bin from 0.1 through 8.058 um during cumulative clean marine periods and CAT Event 1 as described in the manuscript. The file “K_at_0.16S_Royer2022” contains κ values calculated at 0.16% supersaturation (S) throughout the entire sampling period. These data were specifically used to generate the plot in Figure 7a. The file “CCN#_at_0.16S_Royer2022” contains cloud condensation nuclei (CCN) values calculated at 0.16% supersaturation (S) throughout the entire sampling period. These data were used to create the CCN portion of the plot in Figure 7b. 
    more » « less
  5. These data represent a self-organizing map (SOM) classification of all trans-Atlantic integrated dust fluxes (IDT) between June-July 1981-2020 as presented in: Miller, P. W., and C. Ramseyer, In press: The relationship between the Saharan Air Layer, convective environmental conditions, and precipitation in Puerto Rico. Journal of Geophysical Research: Atmospheres.  Each daily IDT field is paired to one of 12 discrete pathways in idt_bmus_junjul.csv. The mean composite IDT over the tropical North Atlantic for each of these 12 patterns, as well as the mean composite Galvez-Davison Index (ERS_idt_node_gdi_1981_2020_junjul.nc) and mean composite precipitation over Puerto Rico (ERS_idt_node_prcp_1981_2020_junjul.nc) for the same node-date pairings are also provided. See the above-referenced manuscript for more details. 
    more » « less