skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Maximum Likelihood Estimation of Optimal Receiver Operating Characteristic Curves From Likelihood Ratio Observations
Award ID(s):
1900636
PAR ID:
10637395
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Institute of Electrical and Electronics Engineers
Date Published:
Journal Name:
IEEE Transactions on Information Theory
Volume:
71
Issue:
10
ISSN:
0018-9448
Format(s):
Medium: X Size: p. 7568-7584
Size(s):
p. 7568-7584
Sponsoring Org:
National Science Foundation
More Like this
  1. In computational mechanics, multiple models are often present to describe a physical system. While Bayesian model selection is a helpful tool to compare these models using measurement data, it requires the computationally expensive estimation of a multidimensional integral — known as the marginal likelihood or as the model evidence (i.e., the probability of observing the measured data given the model) — over the multidimensional parameter domain. This study presents efficient approaches for estimating this marginal likelihood by transforming it into a one-dimensional integral that is subsequently evaluated using a quadrature rule at multiple adaptively-chosen iso-likelihood contour levels. Three different algorithms are proposed to estimate the probability mass at each adapted likelihood level using samples from importance sampling, stratified sampling, and Markov chain Monte Carlo (MCMC) sampling, respectively. The proposed approach is illustrated — with comparisons to Monte Carlo, nested, and MultiNest sampling — through four numerical examples. The first, an elementary example, shows the accuracies of the three proposed algorithms when the exact value of the marginal likelihood is known. The second example uses an 11-story building subjected to an earthquake excitation with an uncertain hysteretic base isolation layer with two models to describe the isolation layer behavior. The third example considers flow past a cylinder when the inlet velocity is uncertain. Based on the these examples, the method with stratified sampling is by far the most accurate and efficient method for complex model behavior in low dimension, particularly considering that this method can be implemented to exploit parallel computation. In the fourth example, the proposed approach is applied to heat conduction in an inhomogeneous plate with uncertain thermal conductivity modeled through a 100 degree-of-freedom Karhunen–Loève expansion. The results indicate that MultiNest cannot efficiently handle the high-dimensional parameter space, whereas the proposed MCMC-based method more accurately and efficiently explores the parameter space. The marginal likelihood results for the last three examples — when compared with the results obtained from standard Monte Carlo sampling, nested sampling, and MultiNest algorithm — show good agreement. 
    more » « less
  2. The optimal receiver operating characteristic (ROC) curve, giving the maximum probability of detection as a function of the probability of false alarm, is a key information-theoretic indicator of the difficulty of a binary hypothesis testing problem (BHT). It is well known that the optimal ROC curve for a given BHT, corresponding to the likelihood ratio test, is theoretically determined by the probability distribution of the observed data under each of the two hypotheses. In some cases, these two distributions may be unknown or computationally intractable, but independent samples of the likelihood ratio can be observed. This raises the problem of estimating the optimal ROC for a BHT from such samples. The maximum likelihood estimator of the optimal ROC curve is derived, and it is shown to converge to the true optimal ROC curve in the \levy\ metric, as the number of observations tends to infinity. A classical empirical estimator, based on estimating the two types of error probabilities from two separate sets of samples, is also considered. The maximum likelihood estimator is observed in simulation experiments to be considerably more accurate than the empirical estimator, especially when the number of samples obtained under one of the two hypotheses is small. The area under the maximum likelihood estimator is derived; it is a consistent estimator of the true area under the optimal ROC curve. 
    more » « less
  3. null (Ed.)
    Summary High-dimensional statistical inference with general estimating equations is challenging and remains little explored. We study two problems in the area: confidence set estimation for multiple components of the model parameters, and model specifications tests. First, we propose to construct a new set of estimating equations such that the impact from estimating the high-dimensional nuisance parameters becomes asymptotically negligible. The new construction enables us to estimate a valid confidence region by empirical likelihood ratio. Second, we propose a test statistic as the maximum of the marginal empirical likelihood ratios to quantify data evidence against the model specification. Our theory establishes the validity of the proposed empirical likelihood approaches, accommodating over-identification and exponentially growing data dimensionality. Numerical studies demonstrate promising performance and potential practical benefits of the new methods. 
    more » « less