skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: A thinner jacket for frosty and windy climates? Global patterns in leaf cuticle thickness and its environmental associations
Summary Plant cuticles protect the interior tissues from ambient hazards, including desiccation, UV light, physical wear, herbivores and pathogens. Consequently, cuticle properties are shaped by evolutionary selection.We compiled a global dataset of leaf cuticle thickness (CT) and accompanying leaf traits for 1212 species, mostly angiosperms, from 293 sites representing all vegetated continents. We developed and tested 11 hypotheses concerning ecological drivers of interspecific variation in CT.CT showed clear patterning according to latitude, biome, taxonomic family, site climate and other leaf traits. Species with thick leaves and/or high leaf mass per area tended to have thicker cuticles, as did evergreen relative to deciduous woody species, and species from sites that during the growing season were warmer, had fewer frost days and lower wind speeds, and occurred at lower latitudes. CT–environment relationships were notably stronger among nonwoody than woody species.Heavy investment in cuticle may be disadvantaged at sites with high winds and frequent frosts for ‘economic’ or biomechanical reasons, or because of reduced herbivore pressure. Alternatively, cuticles may become more heavily abraded under such conditions. Robust quantification of CT–trait–environment relationships provides new insights into the multiple roles of cuticles, with additional potential use in paleo‐ecological reconstruction.  more » « less
Award ID(s):
2017949
PAR ID:
10637420
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
New Phytologist
Date Published:
Journal Name:
New Phytologist
Volume:
248
Issue:
1
ISSN:
0028-646X
Page Range / eLocation ID:
107 to 124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Concurrent measurement of multiple foliar traits to assess the full range of trade‐offs among and within taxa and across broad environmental gradients is limited. Leaf spectroscopy can quantify a wide range of foliar functional traits, enabling assessment of interrelationships among traits and with the environment.We analyzed leaf trait measurements from 32 sites along the wide eco‐climatic gradient encompassed by the US National Ecological Observatory Network (NEON). We explored the relationships among 14 foliar traits of 1103 individuals across and within species, and with environmental factors.Across all species pooled, the relationships between leaf economic traits (leaf mass per area, nitrogen) and traits indicative of defense and stress tolerance (phenolics, nonstructural carbohydrates) were weak, but became strong within certain species. Elevation, mean annual temperature and precipitation weakly predicted trait variation across species, although some traits exhibited species‐specific significant relationships with environmental factors.Foliar functional traits vary idiosyncratically and species express diverse combinations of leaf traits to achieve fitness. Leaf spectroscopy offers an effective approach to quantify intra‐species trait variation and covariation, and potentially could be used to improve the characterization of vegetation in Earth system models. 
    more » « less
  2. Abstract Changes in climate and land management over the last half‐century have favoured woody plants native to grasslands and led to the rapid expansion of woody species. Despite this being a global phenomenon, it is unclear why some woody species have rapidly expanded while others have not. We assessed whether the most abundant woody encroaching species in tallgrass prairie have common growth forms and physiology or unique traits that differentiate their resource‐use strategies.We characterized the abundance, above‐ground carbon allocation, and leaf‐level physiological and structural traits of seven woody encroaching species in tallgrass prairie that span an order of magnitude in abundance. To identify species‐specific increases in abundance, we used a 34‐year species composition dataset at Konza Prairie Biological Station (Central Great Plains, USA). We then compared biomass allocation and leaf‐level traits to determine differences in carbon and water use strategies among species.While all focal species increased in abundance over time, encroachment in this system is primarily driven by three species:Cornus drummondii,Prunus americanaandRhus glabra. The most dominant species,Cornus drummondii, had the most extreme values for several traits, including the lowest leaf:stem mass ratios, lowest photosynthetic capacity and highest turgor loss point.Two of the most abundant species,Cornus drummondiiandRhus glabra, had opposing growth forms and resource‐use strategies. These species had significantly different above‐ground carbon allocation, leaf‐level drought tolerance and photosynthetic capacity. There were surprisingly few interspecific differences in specific leaf area and leaf dry matter content, suggesting these traits were poor predictors of species‐level encroachment.Synthesis. Woody encroaching species in tallgrass prairie encompass a spectrum of growth forms and leaf physiology. Two of the most abundant woody species fell at opposite ends of this spectrum. Our results suggest niche differences among a community of woody species facilitate the rapid encroachment by a few species. This study shows that woody encroaching species do not conform to a ‘one‐size‐fits‐all’ strategy, and a diversity of growth forms and physiological strategies may make it more challenging to reach management goals that aim to conserve or restore grassland communities. 
    more » « less
  3. Summary Predictive relationships between plant traits and environmental factors can be derived at global and regional scales, informing efforts to reorient ecological models around functional traits. However, in a changing climate, the environmental variables used as predictors in such relationships are far from stationary. This could yield errors in trait–environment model predictions if timescale is not accounted for.Here, the timescale dependence of trait–environment relationships is investigated by regressingin situtrait measurements of specific leaf area, leaf nitrogen content, and wood density on local climate characteristics summarized across several increasingly long timescales.We identify contrasting responses of leaf and wood traits to climate timescale. Leaf traits are best predicted by recent climate timescales, while wood density is a longer term memory trait. The use of sub‐optimal climate timescales reduces the accuracy of the resulting trait–environment relationships.This study concludes that plant traits respond to climate conditions on the timescale of tissue lifespans rather than long‐term climate normals, even at large spatial scales where multiple ecological and physiological mechanisms drive trait change. Thus, determining trait–environment relationships with temporally relevant climate variables may be critical for predicting trait change in a nonstationary climate system. 
    more » « less
  4. Abstract Environmental gradients act as potent filters on species distributions driving compositional shifts across communities. Compositional shifts may reflect differences in physiological tolerances to a limiting resource that result in broad distributions for tolerant species and restricted distributions for intolerant species (i.e. a nested pattern). Alternatively, trade‐offs in resource use or conflicting species' responses to multiple resources can result in complete turnover of species along gradients.We combined trait (leaf area, leaf mass per area, wood density and maximum height) and distribution data for 550 tree species to examine taxonomic and functional composition at 72 sites across strong gradients of soil phosphorus (P) and rainfall in central Panama.We determined whether functional and taxonomic composition was nested or turned over completely and whether community mean traits and species composition were more strongly driven by P or moisture.Turnover characterized the functional composition of tree communities. Leaf traits responded to both gradients, with species having larger and thinner leaves in drier and more fertile sites than in wetter and less fertile sites. These leaf trait–moisture relationships contradict predictions based on drought responses and suggest a greater role for differences in light availability than in moisture. Shifts in wood density and maximum height were weaker than for leaf traits with taller species dominating wet sites and low wood density species dominating P‐rich sites.Turnover characterized the taxonomic composition of tree communities. Geographic distances explained a larger fraction of variation for taxonomic composition than for functional composition, and community mean traits were more strongly driven by P than moisture.Synthesis. Our results offer weak support for the tolerance hypothesis for tree communities in central Panama. Instead, we observe functional and taxonomic turnover reflecting trade‐offs and conflicting species' responses to multiple abiotic factors including moisture, soil phosphorus and potentially other correlated variables (e.g. light). 
    more » « less
  5. Summary The scope of plant control over its microbiome is a central question in evolutionary biology and agriculture. Leaf traits are known to shape pathogen colonization and disease development, but their impact on the broader community of largely non‐pathogenic fungi that colonize plant leaves remains an open question.We used reciprocal common gardens of the model tree,Populus trichocarpa(black cottonwood), to examine relationships between leaf traits and the leaf mycobiome in two strongly contrasting environments. We measured six leaf traits (stomatal length, stomatal density, carbon‐to‐nitrogen ratio, leaf thickness, leaf dry matter content, and specific leaf area) and used fungal marker gene sequencing to characterize leaf fungal communities for 57 tree genotypes replicated in one mesic and one xeric common garden (809 trees).Several leaf traits covaried with the leaf mycobiome, yet one relationship was paramount: plant genotypes with longer, sparser leaf stomata hosted a greater richness and diversity of more similar fungal species compared to plant genotypes with shorter, denser leaf stomata.These relationships, while modulated by the environment plants were sourced from and grown in, suggest that stomatal traits may be a general mechanism through which plants and the leaf mycobiome influence one another. 
    more » « less