Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Plant cuticles protect the interior tissues from ambient hazards, including desiccation, UV light, physical wear, herbivores and pathogens. Consequently, cuticle properties are shaped by evolutionary selection.We compiled a global dataset of leaf cuticle thickness (CT) and accompanying leaf traits for 1212 species, mostly angiosperms, from 293 sites representing all vegetated continents. We developed and tested 11 hypotheses concerning ecological drivers of interspecific variation in CT.CT showed clear patterning according to latitude, biome, taxonomic family, site climate and other leaf traits. Species with thick leaves and/or high leaf mass per area tended to have thicker cuticles, as did evergreen relative to deciduous woody species, and species from sites that during the growing season were warmer, had fewer frost days and lower wind speeds, and occurred at lower latitudes. CT–environment relationships were notably stronger among nonwoody than woody species.Heavy investment in cuticle may be disadvantaged at sites with high winds and frequent frosts for ‘economic’ or biomechanical reasons, or because of reduced herbivore pressure. Alternatively, cuticles may become more heavily abraded under such conditions. Robust quantification of CT–trait–environment relationships provides new insights into the multiple roles of cuticles, with additional potential use in paleo‐ecological reconstruction.more » « less
-
Summary A prevailing hypothesis posits that achieving higher maximum rates of leaf carbon gain and water loss is constrained by geometry and/or selection to limit the allocation of epidermal area to stomata (fS). Under this ‘stomatal‐area minimization hypothesis’, highergs,maxis associated with greater numbers of smaller stomata because this trait combination increasesgs,maxwith minimal increase infS, leading to relative conservation offSsemi‐independent ofgs,maxdue to coordination in stomatal size, density, and pore depth. An alternative hypothesis is that the evolution of highergs,maxcan be enabled by a greater epidermal area allocated to stomata, leading to positive covariation betweenfSandgs,max; we call this the ‘stomatal‐area adaptation hypothesis’. Under this hypothesis, the interspecific scaling betweengs,max, stomatal density, and stomatal size is a by‐product of selection on a moving optimalgs,max.We integrated biophysical and evolutionary quantitative genetic modeling with phylogenetic comparative analyses of a global data set of stomatal density and size from 2408 vascular forest species. The models present specific assumptions of both hypotheses and deduce predictions that can be evaluated with our empirical analyses of forest plants.There are three main results. First, neither the stomatal‐area minimization nor adaptation hypothesis is sufficient to be supported. Second, estimates of interspecific scaling from common regression methods cannot reliably distinguish between hypotheses when stomatal size is bounded. Third, we reconcile both hypotheses with the data by including an additional assumption that stomatal size is bounded by a wide range and under selection; we refer to this synthetic hypothesis as the ‘stomatal adaptation + bounded size’ hypothesis.This study advances our understanding of scaling between stomatal size and density by mathematically describing specific assumptions of competing hypotheses, demonstrating that existing hypotheses are inconsistent with observations, and reconciling these hypotheses with phylogenetic comparative analyses by postulating a synthetic model of selection ongs,max,fS, and stomatal size.more » « less
-
Summary Mature leaf area (LA) is a showcase of diversity – varying enormously within and across species, and associated with the productivity and distribution of plants and ecosystems. Yet, it remains unclear how developmental processes determine variation in LA.We introduce a mathematical framework pinpointing the origin of variation in LA by quantifying six epidermal ‘developmental traits’: initial mean cell size and number (approximating values within the leaf primordium), and the maximum relative rates and durations of cell proliferation and expansion until leaf maturity. We analyzed a novel database of developmental trajectories of LA and epidermal anatomy, representing 12 eudicotyledonous species and 52 Arabidopsis experiments.Within and across species, mean primordium cell number and maximum relative cell proliferation rate were the strongest developmental determinants of LA. Trade‐offs between developmental traits, consistent with evolutionary and metabolic scaling theory, strongly constrain LA variation. These include trade‐offs between primordium cell number vs cell proliferation, primordium mean cell size vs cell expansion, and the durations vs maximum relative rates of cell proliferation and expansion. Mutant and wild‐type comparisons showed these trade‐offs have a genetic basis in Arabidopsis.Analyses of developmental traits underlying LA and its diversification highlight mechanisms for leaf evolution, and opportunities for breeding trait shifts.more » « less
-
Abstract PremisePrevious studies have suggested a trade‐off between trichome density (Dt) and stomatal density (Ds) due to shared cell precursors. We clarified how, when, and why this developmental trade‐off may be overcome across species. MethodsWe derived equations to determine the developmental basis forDtandDsin trichome and stomatal indices (itandis) and the sizes of epidermal pavement cells (e), trichome bases (t), and stomata (s) and quantified the importance of these determinants ofDtandDsfor 78 California species. We compiled 17 previous studies ofDt–Dsrelationships to determine the commonness ofDt–Dsassociations. We modeled the consequences of differentDt–Dsassociations for plant carbon balance. ResultsOur analyses showed that higherDtwas determined by higheritand lowere, and higherDsby higherisand lowere. Across California species, positiveDt–Dscoordination arose due toit–iscoordination and impacts of the variation ine. ADt–Dstrade‐off was found in only 30% of studies. Heuristic modeling showed that species sets would have the highest carbon balance with a positive or negative relationship or decoupling ofDtandDs, depending on environmental conditions. ConclusionsShared precursor cells of trichomes and stomata do not limit higher numbers of both cell types or drive a generalDt–Dstrade‐off across species. This developmental flexibility across diverse species enables differentDt–Dsassociations according to environmental pressures. Developmental trait analysis can clarify how contrasting trait associations would arise within and across species.more » « less
-
Abstract Plant ecological strategies are shaped by numerous functional traits and their trade‐offs. Trait network analysis enables testing hypotheses for the shifting of trait correlation architecture across communities differing in climate and productivity.We built plant trait networks (PTNs) for 118 species within six communities across an aridity gradient, from forest to semi‐desert across the California Floristic Province, based on 34 leaf and wood functional traits, representing hydraulic and photosynthetic function, structure, economics and size. We developed hypotheses for the association of PTN parameters with climate and ecosystem properties, based on theory for the adaptation of species to low resource/stressful environments versus higher resource availability environments with greater potential niche differentiation. Thus, we hypothesized that across community PTNs, trait network connectivity (i.e., the degree that traits are intercorrelated) and network complexity (i.e., the number of trait modules, and the degree of trait integration among modules) would be lower for communities adapted to arid climates and higher for communities adapted to greater water availability, similarly to trends expected for phylogenetic diversity, functional richness and productivity. Further, within given PTNs, we hypothesized that traits would vary strongly in their network connectivity and that the traits most centrally connected within PTNs would be those with the least across‐species variation.Across communities from more arid to wetter climates, PTN architecture varied from less to more interconnected and complex, in association with functional richness, but PTN architecture was independent of phylogenetic diversity and ecosystem productivity. Within the community PTNs, traits with lower species variation were more interconnected.Synthesis. The responsiveness of PTN architecture to climate highlights how a wide range of traits contributes to physiological and ecological strategies with an architecture that varies among plant communities. Communities in more arid environments show a lower degree of phenotypic integration, consistent with lesser niche differentiation. Our study extends the usefulness of PTNs as an approach to quantify tradeoffs among multiple traits, providing connectivity and complexity parameters as tools that clarify plant environmental adaptation and patterns of trait associations that would influence species distributions, community assembly, and ecosystem resilience in response to climate change.more » « less
-
Summary Grasses are exceptionally productive, yet their hydraulic adaptation is paradoxical. Among C3grasses, a high photosynthetic rate (Aarea) may depend on higher vein density (Dv) and hydraulic conductance (Kleaf). However, the higherDvof C4grasses suggests a hydraulic surplus, given their reduced need for highKleafresulting from lower stomatal conductance (gs).Combining hydraulic and photosynthetic physiological data for diverse common garden C3and C4species with data for 332 species from the published literature, and mechanistic modeling, we validated a framework for linkages of photosynthesis with hydraulic transport, anatomy, and adaptation to aridity.C3and C4grasses had similarKleafin our common garden, but C4grasses had higherKleafthan C3species in our meta‐analysis. Variation inKleafdepended on outside‐xylem pathways. C4grasses have highKleaf : gs, which modeling shows is essential to achieve their photosynthetic advantage.Across C3grasses, higherAareawas associated with higherKleaf, and adaptation to aridity, whereas for C4species, adaptation to aridity was associated with higherKleaf : gs. These associations are consistent with adaptation for stress avoidance.Hydraulic traits are a critical element of evolutionary and ecological success in C3and C4grasses and are crucial avenues for crop design and ecological forecasting.more » « less
-
Sensitive Hydraulic and Stomatal Decline in Extreme Drought Tolerant Species of California CeanothusABSTRACT Identifying the physiological mechanisms by which plants are adapted to drought is critical to predict species responses to climate change. We measured the responses of leaf hydraulic and stomatal conductances (Kleafandgs, respectively) to dehydration, and their association with anatomy, in seven species of CaliforniaCeanothusgrown in a common garden, including some of the most drought‐tolerant species in the semi‐arid flora. We tested for matching of maximum hydraulic supply and demand and quantified the role of decline ofKleafin driving stomatal closure. AcrossCeanothusspecies, maximumKleafandgswere negatively correlated, and bothKleafandgsshowed steep declines with decreasing leaf water potential (i.e., a high sensitivity to dehydration). The leaf water potential at 50% decline ingswas linked with a low ratio of maximum hydraulic supply to demand (i.e., maximumKleaf:gs). This sensitivity ofgs, combined with low minimum epidermal conductance and water storage, could contribute to prolonged leaf survival under drought. The specialized anatomy of subg.Cerastesincludes trichomous stomatal crypts and pronounced hypodermis, and was associated with higher water use efficiency and water storage. Combining our data with comparative literature of other California species, species of subg. Cerastesshow traits associated with greater drought tolerance and reliance on leaf water storage relative to other California species. In addition to drought resistance mechanisms such as mechanical protection and resistance to embolism, drought avoidance mechanisms such as sensitive stomatal closure could contribute importantly to drought tolerance in dry‐climate adapted species.more » « less
-
ABSTRACT ‘Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot‐ to landscape‐scale without understanding its relationship with ‘water content’. The capacity for detecting vegetation water content via microwave remote sensing further increases the need to understand the link between water content and ecosystem function. In this review, we explore how the fundamental measures of water status, water potential and water content are linked at ecosystem‐scale drawing on the existing theory of pressure‐volume (PV) relationships. We define and evaluate the concept and limitations of applying PV relationships to ecosystems where the quantity of water can vary on short timescales with respect to plant water status, and over longer timescales and over larger areas due to structural changes in vegetation. As a proof of concept, plot‐scale aboveground vegetation PV curves were generated from equilibrium (e.g., predawn) water potentials and water content of the above ground biomass of nine plots, including tropical rainforest, savanna, temperate forest, and a long‐term Amazonian rainforest drought experiment. Initial findings suggest that the stored water and ecosystem capacitance scale linearly with biomass across diverse systems, while the relative values of ecosystem hydraulic capacitance and physiologically accessible water storage do not vary systematically with biomass. The bottom‐up scaling approach to ecosystem water relations identified the need to characterise the distribution of water potentials within a community and also revealed the relevance of community‐level plant tissue fractions to ecosystem water relations. We believe that this theory will be instrumental in linking our detailed understanding of biophysical processes at tissue‐scale to the scale at which land surface models operate and at which tower‐based, airborne and satellite remote sensing can provide information.more » « less
-
Synopsis Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth’s ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.e., representing the ecosystem as an aggregate of its individuals or as a metaphorical or literal super-organ or organism. We review recent approaches to scaling-up plant water relations (hydraulics) concepts developed for organs and organisms to enable and interpret measurements at ecosystem-level. We focus on three community-scale versions of water relations traits that have potential to provide mechanistic insight into climate change responses of forest CO2 and H2O gas exchange and productivity: leaf water potential (Ψcanopy), pressure volume curves (eco-PV), and hydraulic conductance (Keco). These analyses can reveal additional ecosystem-scale parameters analogous to those typically quantified for leaves or plants (e.g., wilting point and hydraulic vulnerability) that may act as thresholds in forest responses to drought, including growth cessation, mortality, and flammability. We unite these concepts in a novel framework to predict Ψcanopy and its approaching of critical thresholds during drought, using measurements of Keco and eco-PV curves. We thus delineate how the extension of water relations concepts from organ- and organism-scales can reveal the hydraulic constraints on the interaction of vegetation and climate and provide new mechanistic understanding and prediction of forest water use and productivity.more » « less
-
Abstract Spatiotemporal patterns of plant water uptake, loss, and storage exert a first‐order control on photosynthesis and evapotranspiration. Many studies of plant responses to water stress have focused on differences between species because of their different stomatal closure, xylem conductance, and root traits. However, several other ecohydrological factors are also relevant, including soil hydraulics, topographically driven redistribution of water, plant adaptation to local climatic variations, and changes in vegetation density. Here, we seek to understand the relative importance of the dominant species for regional‐scale variations in woody plant responses to water stress. We map plant water sensitivity (PWS) based on the response of remotely sensed live fuel moisture content to variations in hydrometeorology using an auto‐regressive model. Live fuel moisture content dynamics are informative of PWS because they directly reflect vegetation water content and therefore patterns of plant water uptake and evapotranspiration. The PWS is studied using 21,455 wooded locations containing U.S. Forest Service Forest Inventory and Analysis plots across the western United States, where species cover is known and where a single species is locally dominant. Using a species‐specific mean PWS value explains 23% of observed PWS variability. By contrast, a random forest driven by mean vegetation density, mean climate, soil properties, and topographic descriptors explains 43% of observed PWS variability. Thus, the dominant species explains only 53% (23% compared to 43%) of explainable variations in PWS. Mean climate and mean NDVI also exert significant influence on PWS. Our results suggest that studies of differences between species should explicitly consider the environments (climate, soil, topography) in which observations for each species are made, and whether those environments are representative of the entire species range.more » « less
An official website of the United States government
