skip to main content

Search for: All records

Award ID contains: 2017949

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    A surge of papers have reported low leaf vulnerability to xylem embolism during drought. Here, we focus on the less studied, and more sensitive, outside‐xylem leaf hydraulic responses to multiple internal and external conditions. Studies of 34 species have resolved substantial vulnerability to dehydration of the outside‐xylem pathways, and studies of leaf hydraulic responses to light also implicate dynamic outside‐xylem responses. Detailed experiments suggest these dynamic responses arise at least in part from strong control of radial water movement across the vein bundle sheath. While leaf xylem vulnerability may influence leaf and plant survival during extreme drought, outside‐xylem dynamic responses are important for the control and resilience of water transport and leaf water status for gas exchange and growth.

    more » « less
  2. Abstract

    Intra‐specific trait variation (ITV) plays a role in processes at a wide range of scales from organs to ecosystems across climate gradients. Yet, ITV remains rarely quantified for many ecophysiological traits typically assessed for species means, such as pressure volume (PV) curve parameters including osmotic potential at full turgor and modulus of elasticity, which are important in plant water relations. We defined a baseline “reference ITV” (ITVref) as the variation among fully exposed, mature sun leaves of replicate individuals of a given species grown in similar, well‐watered conditions, representing the conservative sampling design commonly used for species‐level ecophysiological traits. We hypothesized that PV parameters would show low ITVrefrelative to other leaf morphological traits, and that their intraspecific relationships would be similar to those previously established across species and proposed to arise from biophysical constraints. In a database of novel and published PV curves and additional leaf structural traits for 50 diverse species, we found low ITVreffor PV parameters relative to other morphological traits, and strong intraspecific relationships among PV traits. Simulation modeling showed that conservative ITVrefenables the use of species‐mean PV parameters for scaling up from spectroscopic measurements of leaf water content to enable sensing of leaf water potential.

    more » « less
  3. Abstract Aim

    Addressing global environmental challenges requires access to biodiversity data across wide spatial, temporal and taxonomic scales. Availability of such data has increased exponentially recently with the proliferation of biodiversity databases. However, heterogeneous coverage, protocols, and standards have hampered integration among these databases. To stimulate the next stage of data integration, here we present a synthesis of major databases, and investigate (a) how the coverage of databases varies across taxonomy, space, and record type; (b) what degree of integration is present among databases; (c) how integration of databases can increase biodiversity knowledge; and (d) the barriers to database integration.



    Time period


    Major taxa studied

    Plants and vertebrates.


    We reviewed 12 established biodiversity databases that mainly focus on geographic distributions and functional traits at global scale. We synthesized information from these databases to assess the status of their integration and major knowledge gaps and barriers to full integration. We estimated how improved integration can increase the data coverage for terrestrial plants and vertebrates.


    Every database reviewed had a unique focus of data coverage. Exchanges of biodiversity information were common among databases, although not always clearly documented. Functional trait databases were more isolated than those pertaining to species distributions. Variation and potential incompatibility of taxonomic systems used by different databases posed a major barrier to data integration. We found that integration of distribution databases could lead to increased taxonomic coverage that corresponds to 23 years’ advancement in data accumulation, and improvement in taxonomic coverage could be as high as 22.4% for trait databases.

    Main conclusions

    Rapid increases in biodiversity knowledge can be achieved through the integration of databases, providing the data necessary to address critical environmental challenges. Full integration across databases will require tackling the major impediments to data integration: taxonomic incompatibility, lags in data exchange, barriers to effective data synchronization, and isolation of individual initiatives.

    more » « less
  4. Abstract

    Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community. We identify four ecological cases contributing to the emergence and persistence of functionally distinct species. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative population growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and guidelines to distinguish between them. In addition to these deterministic processes, we explore how stochastic dispersal limitation can yield functional distinctiveness. Our framework offers a novel perspective on the relationship between fitness landscape heterogeneity and the functional composition of ecological assemblages.

    more » « less
  5. Summary

    Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed‐canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopyTleaf. Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damagingTleafthan their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme highTleaf's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest–climate feedback.

    more » « less
  6. Abstract

    We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.

    more » « less
  7. Summary

    Forests are a critical carbon sink and widespread tree mortality resulting from climate‐induced drought stress has the potential to alter forests from a carbon sink to a source, causing a positive feedback on climate change. Process‐based vegetation models aim to represent the current understanding of the underlying mechanisms governing plant physiological and ecological responses to climate. Yet model accuracy varies across scales, and regional‐scale model predictive skill is frequently poor when compared with observations of drought‐driven mortality. I propose a framework that leverages differences in model predictive skill across spatial scales, mismatches between model predictions and observations, and differences in the mechanisms included and absent across models to advance the understanding of the physiological and ecological processes driving observed patterns drought‐driven mortality.

    more » « less
  8. Abstract

    Turnover in species composition and the dominant functional strategies in plant communities across environmental gradients is a common pattern across biomes, and is often assumed to reflect shifts in trait optima. However, the extent to which community‐wide trait turnover patterns reflect changes in how plant traits affect the vital rates that ultimately determine fitness remain unclear.

    We tested whether shifts in the community‐weighted means of four key functional traits across an environmental gradient in a southern California grassland reflect variation in how these traits affect species' germination and fecundity across the landscape.

    We asked whether models that included trait–environment interactions help explain variation in two key vital rates (germination rates and fecundity), as well as an integrative measure of fitness incorporating both vital rates (the product of germination rate and fecundity). To do so, we planted seeds of 17 annual plant species at 16 sites in cleared patches with no competitors, and quantified the lifetime seed production of 1360 individuals. We also measured community composition and a variety of abiotic variables across the same sites. This allowed us to evaluate whether observed shifts in community‐weighted mean traits matched the direction of any trait–environment interactions detected in the plant performance experiment.

    We found that commonly measured plant functional traits do help explain variation in species responses to the environment—for example, high‐SLA species had a demographic advantage (higher germination rates and fecundity) in sites with high soil Ca:Mg levels, while low‐SLA species had an advantage in low Ca:Mg soils. We also found that shifts in community‐weighted mean traits often reflect the direction of these trait–environment interactions, though not all trait–environment relationships at the community level reflect changes in optimal trait values across these gradients.

    Synthesis. Our results show how shifts in trait–fitness relationships can give rise to turnover in plant phenotypes across environmental gradients, a fundamental pattern in ecology. We highlight the value of plant functional traits in predicting species responses to environmental variation, and emphasise the need for more widespread study of trait–performance relationships to improve predictions of community responses to global change.

    more » « less
  9. Abstract

    Mycorrhizae alter global patterns of CO2fertilization, carbon storage, and elemental cycling, yet knowledge of their global distributions is currently limited by the availability of forest inventory data. Here, we show that maps of tree‐mycorrhizal associations (hereafter “mycorrhizal maps”) can be improved by the novel technology of imaging spectroscopy because mycorrhizal signatures propagate up from plant roots to impact forest canopy chemistry. We analyzed measurements from 143 airborne imaging spectroscopy surveys over 112,975 individual trees collected across 13 years. Results show remarkable accuracy in capturing ground truth observations of mycorrhizal associations from canopy signals across disparate landscapes (R2 = 0.92,p < 0.01). Upcoming imaging spectroscopy satellite missions can reveal new insights into landscape‐scale variations in water, nitrogen, phosphorus, carotenoid/anthocyanin, and cellulose/lignin composition. Applied globally, this approach could improve the spatial precision of mycorrhizal distributions by a factor of roughly 104and facilitate the incorporation of dynamic shifts in forest composition into Earth system models.

    more » « less
  10. Summary

    As climate change drives increased drought in many forested regions, mechanistic understanding of the factors conferring drought tolerance in trees is increasingly important. The dendrochronological record provides a window through which we can understand how tree size and traits shape growth responses to droughts.

    We analyzed tree‐ring records for 12 species in a broadleaf deciduous forest in Virginia (USA) to test hypotheses for how tree height, microenvironment characteristics, and species’ traits shaped drought responses across the three strongest regional droughts over a 60‐yr period.

    Drought tolerance (resistance, recovery, and resilience) decreased with tree height, which was strongly correlated with exposure to higher solar radiation and evaporative demand. The potentially greater rooting volume of larger trees did not confer a resistance advantage, but marginally increased recovery and resilience, in sites with low topographic wetness index. Drought tolerance was greater among species whose leaves lost turgor (wilted) at more negative water potentials and experienced less shrinkage upon desiccation.

    The tree‐ring record reveals that tree height and leaf drought tolerance traits influenced growth responses during and after significant droughts in the meteorological record. As climate change‐induced droughts intensify, tall trees with drought‐sensitive leaves will be most vulnerable to immediate and longer‐term growth reductions.

    more » « less