An ongoing component of the Baltimore urban long-term ecological research (LTER) project (Baltimore Ecosystem Study, BES) is the use of the watershed approach and monitoring of stream water quality to evaluate the integrated ecosystem functioning of Baltimore. The LTER research has focused on the Gwynns Falls watershed, which spans a gradient from highly urban, urban-residential, and suburban zones. In addition, a forested watershed serves as a reference. The long-term sampling network includes four longitudinal sampling sites along the Gwynns Falls mainstem, as well as several small (40-100 ha) watershed within or near the Gwynns Falls, providing data on water quality in different land use zones of the watersheds. Each study site is continuously monitored for discharge and is sampled weekly for water chemistry. Those data are available elsewhere on the BES website. We are interested in studying the bioreactivity of streams in our watersheds in an attempt to quantify how streams themselves may affect or be affected by water quality. To assess the bioreactivity of streams, we measure whole stream metabolism, which is an integrative metric which quantifies the production and consumption of energy by a stream ecosystem. Stream metabolism represents how energy is created (primary production) and used (respiration) within a stream; it can be thought of as a stream breathing, with primary production being similar to an inhale, and respiration as an exhale. We are monitoring stream metabolism in each of our long-term water quality monitoring stations by deploying sensors that record dissolve oxygen and temperature of the stream every five minutes, and we also have deployed light sensors to record irradiance every five minutes at long-term BES water chemistry streams, which is needed for metabolism modeling. In addition, each dissolved oxygen sensor is located near a USGS gage which estimates discharge every 15 minutes. We used USGS manual discharge estimations linked with channel geometry measurements to develop a unique discharge-stream depth relationship (contact AJ Reisinger for details). The combination of the USGS discharge data and our discharge-depth relationship allows us to estimate average daily discharge and depth. We have included these data as well as dissolved oxygen, temperature, and PAR, allowing metabolism to be scaled on an areal basis. Primary production and respiration of streams integrate all biological activity in a stream, and therefore are good metrics to assess the state of an ecosystem. These metrics can also be used to predict other ecosystem functions. This dataset includes all information needed for whole-stream metabolism modeling using the streammetabolizer R package. Data will updated as it becomes available from the core stream study sites (see http://md.water.usgs.gov/BES for a detailed description of these sites).
more »
« less
StreamPULSE Sensor Data and Metabolism Estimates for Rivers and Streams
Stream metabolism, encompassing gross primary production and ecosystem respiration, reflects the fundamental energetic dynamics of freshwater ecosystems. These processes regulate the concentrations of dissolved gases like oxygen and carbon dioxide, which in turn shape aquatic food webs and ecosystem responses to stressors such as floods, drought, and nutrient loading. Historically difficult to quantify, stream metabolism is now measurable at high temporal resolution thanks to advances in sensor technology and modeling. The StreamPULSE dataset includes high-frequency sensor data, metadata, and modeled estimates of ecosystem metabolism. This living dataset contributes to a growing body of open-access data characterizing the metabolic pulse of stream ecosystems worldwide. To contribute to StreamPULSE, visit data.streampulse.org. All data contributed to StreamPULSE become public after an optional embargo period. Use this publication to access annual data releases, or use data.streampulse.org to download new data as they become available.
more »
« less
- Award ID(s):
- 2215300
- PAR ID:
- 10637561
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Hydroshare
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ecosystem metabolism of freshwater ecosystems has been studied for several decades, with theory and synthesis largely derived from temperate streams and rivers in North America and Europe. Advances in sensor technology and modeling have opened a wider range of streams to be included to test theories beyond temperate streams. In this paper, we review and synthesize ecosystem metabolism data from tropical streams and rivers to determine to what extent the constraints of metabolism measured in temperate streams are similar in tropical streams. We compiled 202 measurements of gross primary productivity (GPP) and ecosystem respiration (ER) from 83 tropical streams spanning 22.2°S to 18.4°N. Overall, tropical streams were heterotrophic (ER > GPP), with GPP ranging from 0.01 to 11.7 g O2m−2d−1and ER ranging from −0.2 to −42.1 g O2m−2d−1, similar on average to rates reviewed from temperate streams, but with higher maximum ER in tropical streams. Gross primary productivity increased with watershed area; a result also observed in temperate streams. ER decreased with elevated phosphorus and higher annual rainfall. We constructed a structural equation model that explained greater variation of ER (74%) than GPP (26%), and reflects similar drivers, such as land‐use and watershed area, as in temperate streams. We conclude that tropical stream ecosystem metabolism has similar drivers as temperate streams, and a warmer and wetter climate and human use of tropical lands will influence metabolic rates in streams.more » « less
-
Abstract Metabolism in stream ecosystems alters the fate of organic carbon (OC) received from surrounding landscapes, but our understanding of in‐stream metabolic processes in boreal ecosystems remains limited. Determining the factors that regulate OC metabolism will help predict how the C balance of boreal streams may respond to future environmental change. In this study, we addressed the question: what controls OC metabolism in boreal headwater streams draining catchments with discontinuous permafrost? We hypothesized that metabolism is collectively regulated by OC reactivity, phosphorus availability, and temperature, with discharge modulating each of these conditions. We tested these hypotheses using a combination of laboratory experiments and whole‐stream ecosystem metabolism measurements throughout the Caribou‐Poker Creeks Research Watershed (CPCRW) in Interior Alaska, USA. In the laboratory experiments, respiration and dissolved OC (DOC) removal were both co‐limited by the supply of reactive C and phosphorus, but temperature and residence time acted as stronger controls of DOC removal. Ecosystem respiration (ER) was largely predicted by discharge and site, with some variance explained by gross primary production (GPP) and temperature. Both ER and GPP varied inversely with watershed permafrost extent, with an inverse relationship between temperature and permafrost extent providing one plausible explanation. Our results provide some of the first evidence of a functional response to permafrost thaw in stream ecosystems and suggest the role of metabolism in landscape C cycling may increase as climate change progresses.more » « less
-
In lakes, ecosystem structure and processes are influenced by gross primary production (GPP), ecosystem respiration (R), and net ecosystem production (NEP). The rates of these metabolic processes are often controlled by resource availability, which often reflects catchment loads. Although the relationship between catchment loads and in-lake nutrient concentrations may be well defined in specific lakes, we explored how watershed vs. in-lake predictors of metabolism compare across lake types. To do this, we combined stream loads of carbon (C), nitrogen (N), and phosphorus (P) with high frequency in situ monitoring of lake metabolism and in-lake C, N, and P concentrations from 16 lakes spanning a range of latitudes (39 to 64 degrees N), inflowing stream (0 - 6 streams), and trophic status (oligotrophic to eutrophic). The data package includes high-frequency dissolved oxygen, water temperature, wind speed, and solar radiation data as well as daily estimates of GPP, R, and NEP derived from those data. In addition, the data package includes in-lake and stream concentrations of dissolved organic carbon, total nitrogen, and total phosphorus and stream discharge data. The package also includes estimates of daily carbon, nitrogen and phosphorus loading to each lake derived from the stream concentrations and discharge.more » « less
-
The overarching goal of this project was to develop a process-based understanding of how watershed-to-lake connections drive nearshore productivity dynamics in a large oligotrophic mountain lake (Lake Tahoe). We addressed this goal through a combined approach of high-frequency sensor deployment and maintenance, ecosystem metabolism modeling, laboratory incubations, and routine monitoring of water chemistry and other parameters. The data we collected as part of this project and the ecosystem metabolism estimates we generated demonstrate how variable ecosystem productivity is in time and space in the nearshore of Lake Tahoe. Although maintenance of the sensor arrays during the exceptional winter of 2023 was challenging, we were able to capture the data necessary to estimate a complete time series of metabolic activity across two years with very different hydroclimatic conditions. Throughout this project we accomplished the following: 1. We generated over two years of daily estimates of ecosystem metabolism (gross primary productivity, ecosystem respiration, and net ecosystem productivity) from multiple locations on both the east and west shores of the lake and from areas in close proximity to and far away from stream water inflows. 2. We measured ammonium (NH4+) and nitrate (NO3-) concentrations in surface water samples from both Glenbrook and Blackwood creeks and the nearshore of Lake Tahoe for over two years. 3. We quantified rates of NH4+ and NO3- uptake in benthic samples of the dominant substrate type collected during peak streamflow, the receding limb, and baseflow conditions in 2023 from multiple locations in the nearshore using established laboratory incubation methods. 4. Finally, we used a combination of time series models and structural equation modeling to integrate our results and improve understanding of the direct and indirect effects of hydroclimatic variability on observed patterns in ecosystem metabolism in the nearshore. See this git code repository for project analysis: https://github.com/kellyloria/Tahoe-streamflow-and-nearshore-metabolism.more » « less
An official website of the United States government
