skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ecosystem metabolism in tropical streams and rivers: a review and synthesis
Abstract Ecosystem metabolism of freshwater ecosystems has been studied for several decades, with theory and synthesis largely derived from temperate streams and rivers in North America and Europe. Advances in sensor technology and modeling have opened a wider range of streams to be included to test theories beyond temperate streams. In this paper, we review and synthesize ecosystem metabolism data from tropical streams and rivers to determine to what extent the constraints of metabolism measured in temperate streams are similar in tropical streams. We compiled 202 measurements of gross primary productivity (GPP) and ecosystem respiration (ER) from 83 tropical streams spanning 22.2°S to 18.4°N. Overall, tropical streams were heterotrophic (ER > GPP), with GPP ranging from 0.01 to 11.7 g O2m−2d−1and ER ranging from −0.2 to −42.1 g O2m−2d−1, similar on average to rates reviewed from temperate streams, but with higher maximum ER in tropical streams. Gross primary productivity increased with watershed area; a result also observed in temperate streams. ER decreased with elevated phosphorus and higher annual rainfall. We constructed a structural equation model that explained greater variation of ER (74%) than GPP (26%), and reflects similar drivers, such as land‐use and watershed area, as in temperate streams. We conclude that tropical stream ecosystem metabolism has similar drivers as temperate streams, and a warmer and wetter climate and human use of tropical lands will influence metabolic rates in streams.  more » « less
Award ID(s):
1655869
PAR ID:
10452903
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
66
Issue:
5
ISSN:
0024-3590
Page Range / eLocation ID:
p. 1627-1638
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Studies of annual patterns of ecosystem metabolism in rivers have primarily been conducted in temperate ecosystems, and little is known about metabolic regimes of tropical rivers. We estimated ecosystem metabolism in four nonwadeable rivers in southern México that varied in size and the extent of human disturbance. The smaller rivers with limited human disturbance showed reduced gross primary production (GPP; 1.0 and 1.7 g O2m−2 d−1), ecosystem respiration (ER; − 1.9 g O2m−2d−1), and net ecosystem production (NEP) approaching autotrophy (− 0. 8 and − 0.3 g O2m−2d−1) relative to rivers draining larger, more disturbed catchments (GPP, 1.2 and 2.7 g O2m−2d−1; ER, − 5.7 and − 6.9 g O2m−2d−1; NEP, − 3.8 and − 3.7 g O2m−2d−1). In all rivers, GPP and ER varied seasonally with discharge. The smaller rivers exhibited a distinct pattern of greater and sustained GPP during periods of low discharge, a seasonal metabolic regime we describe as “flow decline.” In general, process–discharge relationships exhibited thresholds, with an initial decline in GPP and ER, with increasing discharge and an increase in ER at higher flows. Relative to larger and more disturbed watersheds, smaller rivers showed a more constrained metabolic fingerprint. Annual NEP (− 1033 and − 641 g C m−2 yr−1) in the larger rivers was more negative than the global average, supporting evidence from other studies that tropical rivers are greater contributors to CO2emissions than temperate ecosystems. Our study indicates that hydrological seasonality is a major driver of metabolism in tropical rivers. 
    more » « less
  2. Abstract Ponds, wetlands, and shallow lakes (collectively “shallow waterbodies”) are among the most biogeochemically active freshwater ecosystems. Measurements of gross primary production (GPP), respiration (R), and net ecosystem production (NEP) are rare in shallow waterbodies compared to larger and deeper lakes, which can bias our understanding of lentic ecosystem processes. In this study, we calculated GPP, R, and NEP in 26 small, shallow waterbodies across temperate North America and Europe. We observed high rates of GPP (mean 8.4 g O2 m−3 d−1) and R (mean −9.1 g O2 m−3 d−1), while NEP varied from net heterotrophic to autotrophic. Metabolism rates were affected by depth and aquatic vegetation cover, and the shallowest waterbodies had the highest GPP, R, and the most variable NEP. The shallow waterbodies from this study had considerably higher metabolism rates compared to deeper lakes, stressing the importance of these systems as highly productive biogeochemical hotspots. 
    more » « less
  3. Abstract River metabolism and, thus, carbon cycling are governed by gross primary production and ecosystem respiration. Traditionally river metabolism is derived from diel dissolved oxygen concentrations, which cannot resolve diel changes in ecosystem respiration. Here, we compare river metabolism derived from oxygen concentrations with estimates from stable oxygen isotope signatures (δ18O2) from 14 sites in rivers across three biomes using Bayesian inverse modeling. We find isotopically derived ecosystem respiration was greater in the day than night for all rivers (maximum change of 113 g O2 m−2 d−1, minimum of 1 g O2 m−2 d−1). Temperature (20 °C) normalized rates of ecosystem respiration and gross primary production were 1.1 to 87 and 1.5 to 22-fold higher when derived from oxygen isotope data compared to concentration data. Through accounting for diel variation in ecosystem respiration, our isotopically-derived rates suggest that ecosystem respiration and microbial carbon cycling in rivers is more rapid than predicted by traditional methods. 
    more » « less
  4. Abstract Although time series in ecosystem metabolism are well characterized in small and medium rivers, patterns in the world's largest rivers are almost unknown. Large rivers present technical difficulties, including depth measurements, gas exchange (, ) estimates, and the presence of large dams, which can supersaturate gases. We estimated reach‐scale metabolism for the Hanford Reach of the Columbia River (Washington state, USA), a free‐flowing stretch with an average discharge of 3173 . We calculated from semi‐empirical models and directly estimated it from tracer measurements. We fixed at the median value from these calculations (0.5 ), and used maximum likelihood to estimate reach‐scale, open‐channel metabolism. Both gross primary production (GPP) and ecosystem respiration (ER) were high (GPP range: 0.3–30.8 g , ER range: 0.8–30.6 g ), with peak GPP and ER occurring in the late summer or early fall. GPP increased exponentially with temperature, consistent with metabolic theory, while light was seasonally saturating. Annual average GPP, estimated at 1500 g carbon , was in the top 2% of estimates for other rivers. GPP and ER were tightly coupled and 90% of GPP was immediately respired, resulting in net ecosystem production near 0. Patterns in the Hanford Reach contrast with those in small‐medium rivers, suggesting that metabolism magnitudes and patterns in large rivers may not be simply scaled from knowledge of smaller rivers. 
    more » « less
  5. Mean annual temperature and mean annual precipitation drive much of the variation in productivity across Earth's terrestrial ecosystems but do not explain variation in gross primary productivity (GPP) or ecosystem respiration (ER) in flowing waters. We document substantial variation in the magnitude and seasonality of GPP and ER across 222 US rivers. In contrast to their terrestrial counterparts, most river ecosystems respire far more carbon than they fix and have less pronounced and consistent seasonality in their metabolic rates. We find that variation in annual solar energy inputs and stability of flows are the primary drivers of GPP and ER across rivers. A classification schema based on these drivers advances river science and informs management. 
    more » « less