skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: PhA-MOE: Enhancing Hyperspectral Retrievals for Phytoplankton Absorption Using Mixture-of-Experts
As a key component of inherent optical properties (IOPs) in ocean color remote sensing, phytoplankton absorption coefficient (aphy), especially in hyperspectral, greatly enhances our understanding of phytoplankton community composition (PCC). The recent launches of NASA’s hyperspectral missions, such as EMIT and PACE, have generated an urgent need for hyperspectral algorithms for studying phytoplankton. Retrieving aphy from ocean color remote sensing in coastal waters has been extremely challenging due to complex optical properties. Traditional methods often fail under these circumstances, while improved machine-learning approaches are hindered by data scarcity, heterogeneity, and noise from data collection. In response, this study introduces a novel machine learning framework for hyperspectral retrievals of aphy based on the mixture-of-experts (MOEs), named PhA-MOE. Various preprocessing methods for hyperspectral training data are explored, with the combination of robust and logarithmic scalers identified as optimal. The proposed PhA-MOE for aphy prediction is tailored to both past and current hyperspectral missions, including EMIT and PACE. Extensive experiments reveal the importance of data preprocessing and improved performance of PhA-MOE in estimating aphy as well as in handling data heterogeneity. Notably, this study marks the first application of a machine learning–based MOE model to real PACE-OCI hyperspectral imagery, validated using match-up field data. This application enables the exploration of spatiotemporal variations in aphy within an optically complex estuarine environment.  more » « less
Award ID(s):
2332760 2425811
PAR ID:
10637576
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Remote Sensing
Volume:
17
Issue:
12
ISSN:
2072-4292
Page Range / eLocation ID:
2103
Subject(s) / Keyword(s):
hyperspectral imaging phytoplankton absorption mixture of experts artificial intelligence for geoscience
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report on observed trend anomalies in climate-relevant global ocean biogeochemical properties, as derived from satellite ocean color measurements, that show a substantial decline in phytoplankton carbon concentrations following eruptions of the submarine volcano Hunga Tonga-Hunga Ha’apai in January 2022. The anomalies are seen in remotely-sensed ocean color data sets from multiple satellite missions, but not in situ observations, thus suggesting that the observed anomalies are a result of ocean color retrieval errors rather than indicators of a major shift in phytoplankton carbon concentrations. The enhanced concentration of aerosols in the stratosphere following the eruptions results in a violation of some fundamental assumptions in the processing algorithms used to obtain marine biogeochemical properties from satellite radiometric observations, and it is demonstrated through radiative transfer simulations that this is the likely cause of the anomalous trends. We note that any future stratospheric aerosol disturbances, either natural or geoengineered, may lead to similar artifacts in satellite ocean color and other remote-sensing measurements of the marine environment, thus confounding our ability to track the impact of such events on ocean ecosystems. 
    more » « less
  2. As harmful algae blooms are increasing in frequency and magnitude, one goal of a new generation of higher spectral resolution satellite missions is to improve the potential of satellite optical data to monitor these events. A satellite-based algorithm proposed over two decades ago was used for the first time to monitor the extent and temporal evolution of a massive bloom of the dinoflagellate Lingulodinium polyedra off Southern California during April and May 2020. The algorithm uses ultraviolet (UV) data that have only recently become available from the single ocean color sensor on the Japanese GCOM-C satellite. Dinoflagellates contain high concentrations of mycosporine-like amino acids and release colored dissolved organic matter, both of which absorb strongly in the UV part of the spectrum. Ratios <1 of remote sensing reflectance of the UV band at 380 nm to that of the blue band at 443 nm were used as an indicator of the dinoflagellate bloom. The satellite data indicated that an observed, long, and narrow nearshore band of elevated chlorophyll-a (Chl-a) concentrations, extending from northern Baja to Santa Monica Bay, was dominated by L. polyedra. In other high Chl-a regions, the ratios were >1, consistent with historical observations showing a sharp transition from dinoflagellate- to diatom-dominated waters in these areas. UV bands are thus potentially useful in the remote sensing of phytoplankton blooms but are currently available only from a single ocean color sensor. As several new satellites such as the NASA Plankton, Aerosol, Cloud, and marine Ecosystem mission will include UV bands, new algorithms using these bands are needed to enable better monitoring of blooms, especially potentially harmful algal blooms, across large spatiotemporal scales. 
    more » « less
  3. NASA’s Earth Surface Mineral Dust Source Investigation (EMIT) mission seeks to use spaceborne imaging spectroscopy (hyperspectral imaging) to map the mineralogy of arid dust source regions. Here we apply recent developments in Joint Characterization (JC) and the spectral Mixture Residual (MR) to explore the information content of data from this novel mission. Specifically, for a mosaic of 20 spectrally diverse scenes, we find: (1) a generalized three-endmember (Substrate, Vegetation, Dark; SVD) spectral mixture model is capable of capturing the preponderance (99% in three dimensions) of spectral variance with low misfit (99% pixels with <3.7% RMSE); (2) manifold learning (UMAP) is capable of identifying spatially coherent, physically interpretable clustering relationships in the spectral feature space; (3) UMAP yields results that are at least as informative when applied to the MR as when applied to raw reflectance; (4) SVD fraction information usefully contextualizes UMAP clustering relationships, and vice-versa (JC); and (5) when EMIT data are convolved to spectral response functions of multispectral instruments (Sentinel-2, Landsat 8/9, Planet SuperDove), SVD fractions correlate strongly across sensors, but UMAP clustering relationships for the EMIT hyperspectral feature space are far more informative than for simulated multispectral sensors. Implications are discussed for both the utility of EMIT data in the near-term and for the potential of high signal-to-noise (SNR) spaceborne imaging spectroscopy more generally, to transform the future of optical remote sensing in the years and decades to come. 
    more » « less
  4. Abstract. Ocean color remote sensing is a challenging task over coastal watersdue to the complex optical properties of aerosols and hydrosols. Inorder to conduct accurate atmospheric correction, we previously implementeda joint retrieval algorithm, hereafter referred to as the Multi-Angular Polarimetric Ocean coLor (MAPOL) algorithm,to obtain the aerosol and water-leavingsignal simultaneously.The MAPOL algorithm has been validated with syntheticdata generated by a vector radiative transfer model, and good retrievalperformance has been demonstrated in terms of both aerosol and oceanwater optical properties (Gao et al., 2018).In this work we applied the algorithm to airborne polarimetricmeasurements from the Research Scanning Polarimeter (RSP) over bothopen and coastal ocean waters acquired in twofield campaigns: the Ship-Aircraft Bio-Optical Research (SABOR) in2014 and the North Atlantic Aerosols and Marine Ecosystems Study(NAAMES) in 2015 and 2016. Two different yet related bio-opticalmodels are designed for ocean water properties. One model aligns withtraditional open ocean water bio-optical models that parameterize theocean optical properties in terms of the concentration of chlorophyll a. The other is a generalized bio-optical model for coastal watersthat includes seven free parameters to describe the absorption andscattering by phytoplankton, colored dissolved organic matter, andnonalgal particles. The retrieval errors of both aerosol opticaldepth and the water-leaving radiance are evaluated. Through thecomparisons with ocean color data products from both in situmeasurements and the Moderate Resolution Imaging Spectroradiometer(MODIS), and the aerosol product from both the High SpectralResolution Lidar (HSRL) and the Aerosol Robotic Network (AERONET), the MAPOL algorithm demonstrates both flexibility and accuracy in retrievingaerosol and water-leaving radiance properties under various aerosoland ocean water conditions. 
    more » « less
  5. Scientists continue to study the red tide and fish-kill events happening in Florida. Machine learning applications using remote sensing data on coastal waters to monitor water quality parameters and detect harmful algal blooms are also being studied. Unmanned Surface Vehicles (USVs) and Autonomous Underwater Vehicles (AUVs) are often deployed on data collection and disaster response missions. To enhance study and mitigation efforts, robots must be able to use available data to navigate these underwater environments. In this study, we compute a satellite-derived underwater environment (SDUE) model by implementing a supervised machine learning model where remote sensing reflectance (Rrs) indices are labeled with in-situ data they correlate with. The models predict bathymetry and water quality parameters given a recent remote sensing image. In our experiment, we use Sentine1-2 (S2) images and in-situ data of the Biscayne Bay to create an SDUE that can be used as a Chlorophyll-a map. The SDUE is then used in an Extended Kalman Filter (EKF) application that solves an underwater vehicle localization and navigation problem. 
    more » « less