skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modulation of host cell signaling pathways in response to Coxiella burnetii infection
Coxiella burnetii is an obligate intracellular bacterium that lives in a modified lysosome termed the Coxiella containing vacuole (CCV). C. burnetii is the causative agent of the zoonotic illness Q Fever, which primarily infects ruminant livestock and can spread to humans via inhalation. Acute Q fever is characterized by a flu like illness, while chronic disease is associated with more severe symptoms including endocarditis and chronic fatigue syndrome. C. burnetii has a biphasic life cycle consisting of a small cell variant (SCV) and large cell variant (LCV). The SCV is environmentally stable and can cause infection via inhalation of 1 - 10 infectious particles. Once taken up by the host cell, C. burnetii must manipulate the signaling pathways of the host cell to form the CCV where it switches to the LCV, the metabolic and replicative form of the bacterium. It primarily accomplishes this goal by utilizing a Type IV B Secretion System (T4BSS), which is unique to C. burnetii and Legionella pneumophila. The T4BSS, along with some other secretion mechanisms, secretes effector proteins into the host cell. These proteins then interfere with or modulate the host cell to recruit vacuoles, evade detection by the immune system, and prevent the host cell from initiating apoptosis. After about 6 days, the LCV will convert to SCV and then initiate host cell lysis to spread infection. This review looked at many eukaryotic cells signaling pathways and the interactions between C. burnetii and host proteins. These interactions are responsible for the modulation of host cell pathways necessary for CCV formation and C. burnetii survival. Understanding these interactions better will help with future treatments for C. burnetii infection. Further discoveries in these interactions are crucial for the future of C. burnetii research.  more » « less
Award ID(s):
1911370
PAR ID:
10637637
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Journal of Biotech Research
Date Published:
Journal Name:
Journal of Biotech Research
ISSN:
1944-3285
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    At the host–pathogen interface, the protein composition of the plasma membrane (PM) has important implications for how a plant cell perceives and responds to invading microbial pathogens. A plant's ability to modulate its PM composition is critical for regulating the strength, duration, and integration of immune responses. One mechanism by which plant cells reprogram their cell surface is vesicular trafficking, including secretion and endocytosis. These trafficking processes add or remove cargo proteins (such as pattern-recognition receptors, transporters, and other proteins with immune functions) to or from the PM via small, membrane-bound vesicles. Clathrin-coated vesicles (CCVs) that form at the PM and trans-Golgi network/early endosomes have emerged as the prominent vesicle type in the regulation of plant immune responses. In this review, we discuss the roles of the CCV core, adaptors, and accessory components in plant defense signaling and immunity against various microbial pathogens. 
    more » « less
  2. Abstract Despite a vaccine, hepatitis B virus (HBV) remains a world-wide source of infections and deaths. We develop a whole-cell computational platform combining spatial and kinetic models describing the infection cycle of HBV in a hepatocyte host. We simulate key parts of the infection cycle with this whole-cell platform for 10 min of biological time, to predict infection progression, map out virus-host and virus-drug interactions. We find that starting from an established infection, decreasing the copy number of the viral envelope proteins shifts the dominant infection pathway from capsid secretion to re-importing the capsids into the nucleus, resulting in more nuclear-localized viral covalently closed circular DNA (cccDNA) and boosting transcription. This scenario can mimic the consequence of drugs designed to manipulate viral gene expression. Mutating capsid proteins facilitates capsid destabilization and disassembly at nuclear pore complexes, resulting in an increase in cccDNA copy number. However, excessive destabilization leads to premature cytoplasmic disassembly and does not increase the cccDNA counts. Finally, our simulations can predict the best drug dosage and its administration timing to reduce the cccDNA counts. Our adaptable computational platform can be parameterized to study other viruses and identify the most central viral pathways that can be targeted by drugs. 
    more » « less
  3. Abstract Coxiella burnetii (Cb) is an obligate intracellular pathogen in nature and the causative agent of acute Q fever as well as chronic diseases. In an effort to identify genes and proteins crucial to their normal intracellular growth lifestyle, we applied a ‘reverse evolution’ approach where the avirulent Nine Mile Phase II strain of Cb was grown for 67 passages in chemically defined ACCM-D media and gene expression patterns and genome integrity from various passages was compared to passage number one following intracellular growth. Transcriptomic analysis identified a marked downregulation of the structural components of the type 4B secretion system (T4BSS), the general secretory (Sec) pathway, as well as 14 out of 118 previously identified genes encoding effector proteins. Additional downregulated pathogenicity determinants genes included several chaperones, LPS, and peptidoglycan biosynthesis. A general marked downregulation of central metabolic pathways was also observed, which was balanced by a marked upregulation of genes encoding transporters. This pattern reflected the richness of the media and diminishing anabolic, and ATP-generation needs. Finally, genomic sequencing and comparative genomic analysis demonstrated an extremely low level of mutation across passages, despite the observed Cb gene expression changes following acclimation to axenic media. 
    more » « less
  4. Abstract Background Plasma gelsolin (pGSN) is an important part of the blood actin buffer that prevents negative consequences of possible F-actin deposition in the microcirculation and has various functions during host immune response. Recent reports reveal that severe COVID-19 correlates with reduced levels of pGSN. Therefore, using an in vitro system, we investigated whether pGSN could attenuate increased permeability of the blood–brain barrier (BBB) during its exposure to the portion of the SARS-CoV-2 spike protein containing the receptor binding domain (S1 subunit). Materials and methods Two- and three-dimensional models of the human BBB were constructed using the human cerebral microvascular endothelial cell line hCMEC/D3 and exposed to physiologically relevant shear stress to mimic perfusion in the central nervous system (CNS). Trans-endothelial electrical resistance (TEER) as well as immunostaining and Western blotting of tight junction (TJ) proteins assessed barrier integrity in the presence of the SARS-CoV-2 spike protein and pGSN. The IncuCyte Live Imaging system evaluated the motility of the endothelial cells. Magnetic bead-based ELISA was used to determine cytokine secretion. Additionally, quantitative real-time PCR (qRT-PCR) revealed gene expression of proteins from signaling pathways that are associated with the immune response. Results pGSN reversed S1-induced BBB permeability in both 2D and 3D BBB models in the presence of shear stress. BBB models exposed to pGSN also exhibited attenuated pro-inflammatory signaling pathways (PI3K, AKT, MAPK, NF-κB), reduced cytokine secretion (IL-6, IL-8, TNF-α), and increased expression of proteins that form intercellular TJ (ZO-1, occludin, claudin-5). Conclusion Due to its anti-inflammatory and protective effects on the brain endothelium, pGSN has the potential to be an alternative therapeutic target for patients with severe SARS-CoV-2 infection, especially those suffering neurological complications of COVID-19. 
    more » « less
  5. Abstract Salmonella entericais a pathogenic bacterium known for causing severe typhoid fever in humans, making it important to study due to its potential health risks and significant impact on public health. This study provides evolutionary classification of proteins fromSalmonella entericapangenome. We classified 17,238 domains from 13,147 proteins from 79,758Salmonella entericastrains and studied in detail domains of 272 proteins from 14 characterizedSalmonellapathogenicity islands (SPIs). Among SPIs-related proteins, 90 proteins function in the secretion machinery. 41% domains of SPI proteins have no previous sequence annotation. By comparing clinical and environmental isolates, we identified 3682 proteins that are overrepresented in clinical group that we consider as potentially pathogenic. Among domains of potentially pathogenic proteins only 50% domains were annotated by sequence methods previously. Moreover, 36% (1330 out of 3682) of potentially pathogenic proteins cannot be classified into Evolutionary Classification of Protein Domains database (ECOD). Among classified domains of potentially pathogenic proteins the most populated homology groups include helix-turn-helix (HTH), Immunoglobulin-related, and P-loop domains-related. Functional analysis revealed overrepresentation of these protein in biological processes related to viral entry into host cell, antibiotic biosynthesis, DNA metabolism and conformation change, and underrepresentation in translational processes. Analysis of the potentially pathogenic proteins indicates that they form 119 clusters or novel potential pathogenicity islands (NPPIs) within theSalmonellagenome, suggesting their potential contribution to the bacterium’s virulence. One of the NPPIs revealed significant overrepresentation of potentially pathogenic proteins. Overall, our analysis revealed that identified potentially pathogenic proteins are poorly studied. 
    more » « less