skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Interactions and tradeoffs for sustainability, equity, and resilience in wasted food models
Abstract Reducing wasted food has been identified as a key strategy to meet food security goals and attain human nutritional needs and food preferences in an equitable, sustainable, and resilient manner. Yet, mathematically modeling how reducing wasted food contributes to sustainability, equity, and resilience objectives, and the possible interactions and tradeoffs among these metrics, is limited by challenges to quantifying these characteristics. Using the process of convergent science, we develop a prototype wasted food model to evaluate how a set of common equity, sustainability, and resilience measures interact. We consider prevention (consumer education) and treatment (anaerobic digestion and composting) options for wasted food diversion from landfills. The model applies a convex nonlinear optimization to determine the allocation of wasted food to different management alternatives, optimizing for economic (net cost), sustainability (emissions reductions or energy savings), or equity (distribution of per-capita cost or emissions reduction impacts). The model developed in this research is available online as open-source code for others to replicate and build upon for future studies and analysis. Our findings illustrate that optimal wasted food management alternatives may vary when targeting different metrics and that strategies promoting cost-effectiveness may be in tension with sustainability or equity goals and vice versa. The implications of this study could be used by policy makers to evaluate how wasted food reduction measures will impact sustainability, equity, and resilience goals.  more » « less
Award ID(s):
2115405
PAR ID:
10637704
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Environmental Research Communications
Date Published:
Journal Name:
Environmental Research Communications
Volume:
7
Issue:
4
ISSN:
2515-7620
Page Range / eLocation ID:
045013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Public interest in where food comes from and how it is produced, processed, and distributed has increased over the last few decades, with even greater focus emerging during the COVID-19 pandemic. Mounting evidence and experience point to disturbing weaknesses in our food systems’ abilities to support human livelihoods and wellbeing, and alarming long-term trends regarding both the environmental footprint of food systems and mounting vulnerabilities to shocks and stressors. How can we tackle the “wicked problems” embedded in a food system? More specifically, how can convergent research programs be designed and resulting knowledge implemented to increase inclusion, sustainability, and resilience within these complex systems, support widespread contributions to and acceptance of solutions to these challenges, and provide concrete benchmarks to measure progress and understand tradeoffs among strategies along multiple dimensions? This article introduces and defines food systems informatics (FSI) as a tool to enhance equity, sustainability, and resilience of food systems through collaborative, user-driven interaction, negotiation, experimentation, and innovation within food systems. Specific benefits we foresee in further development of FSI platforms include the creation of capacity-enabling verifiable claims of sustainability, food safety, and human health benefits relevant to particular locations and products; the creation of better incentives for the adoption of more sustainable land use practices and for the creation of more diverse agro-ecosystems; the wide-spread use of improved and verifiable metrics of sustainability, resilience, and health benefits; and improved human health through better diets. 
    more » « less
  2. Abstract Global food systems must be a part of strategies for greenhouse gas (GHG) mitigation, optimal water use, and nitrogen pollution reduction. Insights from research in these areas can inform policies to build sustainable food systems yet limited work has been done to build understanding around whether or not sustainability efforts compete with supply chain resilience. This study explores the interplay between food supply resilience and environmental impacts in US cities, within the context of global food systems’ contributions to GHG emissions, water use, and nitrogen pollution. Utilizing county-level agricultural data, we assess the water use, GHG emissions, and nitrogen losses of urban food systems across the US, and juxtapose these against food supply resilience, represented by supply chain diversity. Our results highlight that supply chain resilience and sustainability can simultaneously exist and are not necessarily in competition with each other. We also found a significant per capita footprint in the environmental domains across Southern cities, specifically those along the Gulf Coast and southern Great Plains. Food supply chain resilience scores ranged from 0.18 to 0.69, with lower scores in the southwest and Great Plains, while northeastern and Midwestern regions demonstrated higher resilience. We found several cities with high supply chain resilience and moderate or low environmental impacts as well as areas with high impacts and low resilience. This study provides insights into potential trade-offs and opportunities for creating sustainable urban food systems in the US, underscoring the need for strategies that consider both resilience and environmental implications. 
    more » « less
  3. The dramatic increase in greenhouse gas (GHG) emissions by humans over the past century and a half has created an urgency for monitoring, reporting, and verifying GHG emissions as a first step toward mitigating the effects of climate change. Fifteen percent of global GHG emissions come from agriculture, and companies in the food and beverage industry are starting to set climate goals. We examined the GHG emissions reporting practices and climate goals of the top 100 global food and beverage companies (as ranked by Food Engineering) and determined whether their goals are aligned with the science of keeping climate warming well below a 2°C increase. Using publicly disclosed data in CDP Climate reports and company sustainability reports, we found that about two thirds of the top 100 global food and beverage companies disclose at least part of their total company emissions and set some sort of climate goal that includes scope 1 and 2 emissions. However, only about half have measured, disclosed, and set goals for scope 3 emissions, which often encompass about 88% of a company's emissions across the entire value chain on average. We also determined that companies, despite setting scope 1, 2, and 3 emission goals, may be missing the mark on whether their goals are significantly reducing global emissions. Our results present the current disclosure and emission goals of the top 100 global food and beverage companies and highlight an urgent need to begin and continue to set truly ambitious, science-aligned climate goals. 
    more » « less
  4. Association of Collegiate Schools of Architecture (Ed.)
    Energy use within buildings contributes to nearly a third of carbon emissions in the United States (Zhang et al. 2019, EPA). Meanwhile, between 30-40% of food in the U.S. is wasted and generates carbon emissions equivalent to that of 37 million cars yearly (UN FAO). Long term decarbonization strategies within the built environment can look to alternative energy mechanisms which redirect waste resources as inputs to other systems. Circular City models of sustainability accordingly look for potentials to close loops, turning waste into resources and reducing pollution. These approaches are generating increasing interest and seek to advance a very applied approach to sustainability- one which will integrally require leadership from design fields, local governments, and community leadership to succeed. 
    more » « less
  5. Reducing buildings’ carbon emissions is an important sustainability challenge. While scheduling flexible building loads has been previously used for a variety of grid and energy optimizations, carbon footprint reduction using such flexible loads poses new challenges since such methods need to balance both energy and carbon costs while also reducing user inconvenience from delaying such loads. This article highlights the potential conflict between electricity prices and carbon emissions and the resulting tradeoffs in carbon-aware and cost-aware load scheduling. To address this tradeoff, we propose GreenThrift, a home automation system that leverages the scheduling capabilities of smart appliances and knowledge of future carbon intensity and cost to reduce both the carbon emissions and costs of flexible energy loads. At the heart of GreenThrift is an optimization technique that automatically computes schedules based on user configurations and preferences. We evaluate the effectiveness of GreenThrift using real-world carbon intensity data, electricity prices, and load traces from multiple locations and across different scenarios and objectives. Our results show that GreenThrift can replicate the offline optimal and retains 97% of the savings when optimizing the carbon emissions. Moreover, we show how GreenThrift can balance the conflict between carbon and cost and retain 95.3% and 85.5% of the potential carbon and cost savings, respectively. 
    more » « less