skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 22, 2026

Title: The evolution of robustness and fragility during long-term bacterial adaptation
Theory predicts that well-adapted populations may evolve mechanisms to counteract the inevitable influx of deleterious mutations. While mutational robustness can be directly selected in the laboratory, evidence for its spontaneous evolution during general adaptation is mixed. Moreover, whether robustness evolves to include pleiotropic effects remains largely unexplored. Here, we studied the effects of point mutations in the RNA polymerase ofEscherichia coliover a 15,000-generation adaptive trajectory. Fitness effects of both beneficial and deleterious mutations were attenuated in fitter backgrounds. In contrast, pleiotropic effects became more severe and widespread with greater adaptation. These results show that trade-offs between robustness and fragility can evolve in regulatory networks, regardless of whether driven by adaptive or nonadaptive processes. More broadly, they illustrate how adaptation can generate hidden variability, with unpredictable evolutionary consequences in new environments.  more » « less
Award ID(s):
1951307
PAR ID:
10637800
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences, USA
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
16
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The distribution of fitness effects of mutation plays a central role in constraining protein evolution. The underlying mechanisms by which mutations lead to fitness effects are typically attributed to changes in protein specific activity or abundance. Here, we reveal the importance of a mutation’s collateral fitness effects, which we define as effects that do not derive from changes in the protein’s ability to perform its physiological function. We comprehensively measured the collateral fitness effects of missense mutations in theEscherichia coli TEM-1β-lactamase antibiotic resistance gene using growth competition experiments in the absence of antibiotic. At least 42% of missense mutations inTEM-1were deleterious, indicating that for some proteins collateral fitness effects occur as frequently as effects on protein activity and abundance. Deleterious mutations caused improper posttranslational processing, incorrect disulfide-bond formation, protein aggregation, changes in gene expression, and pleiotropic effects on cell phenotype. Deleterious collateral fitness effects occurred more frequently inTEM-1than deleterious effects on antibiotic resistance in environments with low concentrations of the antibiotic. The surprising prevalence of deleterious collateral fitness effects suggests they may play a role in constraining protein evolution, particularly for highly expressed proteins, for proteins under intermittent selection for their physiological function, and for proteins whose contribution to fitness is buffered against deleterious effects on protein activity and protein abundance. 
    more » « less
  2. Evolutionary adaptation to a constant environment is driven by the accumulation of mutations which can have a range of unrealized pleiotropic effects in other environments. These pleiotropic consequences of adaptation can influence the emergence of specialists or generalists, and are critical for evolution in temporally or spatially fluctuating environments. While many experiments have examined the pleiotropic effects of adaptation at a snapshot in time, very few have observed the dynamics by which these effects emerge and evolve. Here, we propagated hundreds of diploid and haploid laboratory budding yeast populations in each of three environments, and then assayed their fitness in multiple environments over 1000 generations of evolution. We find that replicate populations evolved in the same condition share common patterns of pleiotropic effects across other environments, which emerge within the first several hundred generations of evolution. However, we also find dynamic and environment-specific variability within these trends: variability in pleiotropic effects tends to increase over time, with the extent of variability depending on the evolution environment. These results suggest shifting and overlapping contributions of chance and contingency to the pleiotropic effects of adaptation, which could influence evolutionary trajectories in complex environments that fluctuate across space and time. 
    more » « less
  3. Abstract Natural selection drives adaptive evolution and removes deleterious mutations; these effects are countervailing when a complex adaptation requires mutations that are initially deleterious when they arise, but beneficial in combination. While many models of this dynamic consider how genetic drift or other influences can aid valley crossing by weakening selection, we lack a general, analytical treatment of when relaxed selection might speed this type of adaptation. Here we use simulation and analysis to show that relaxed selection is generally favorable for valley-crossing when adaptive pathways require more than a single deleterious step. We also demonstrate that spatial heterogeneity in selection pressures could, by relaxing selection, allow populations to cross valleys much more rapidly than expected. These results relate to several applications of evolutionary theory to complex systems ranging from host-pathogen evolution to search algorithms in computer science. 
    more » « less
  4. Natural selection drives populations toward higher fitness, but second-order selection for adaptability and mutational robustness can also influence evolution. In many microbial systems, diminishing-returns epistasis contributes to a tendency for more-fit genotypes to be less adaptable, but no analogous patterns for robustness are known. To understand how robustness varies across genotypes, we measure the fitness effects of hundreds of individual insertion mutations in a panel of yeast strains. We find that more-fit strains are less robust: They have distributions of fitness effects with lower mean and higher variance. These differences arise because many mutations have more strongly deleterious effects in faster-growing strains. This negative correlation between fitness and robustness implies that second-order selection for robustness will tend to conflict with first-order selection for fitness. 
    more » « less
  5. Contrary to previous assumptions that most mutations are deleterious, there is increasing evidence for persistence of large-effect mutations in natural populations. A possible explanation for these observations is that mutant phenotypes and fitness may depend upon the specific environmental conditions to which a mutant is exposed. Here, we tested this hypothesis by growing large-effect flowering time mutants of Arabidopsis thaliana in multiple field sites and seasons to quantify their fitness effects in realistic natural conditions. By constructing environment-specific fitness landscapes based on flowering time and branching architecture, we observed that a subset of mutations increased fitness, but only in specific environments. These mutations increased fitness via different paths: through shifting flowering time, branching, or both. Branching was under stronger selection, but flowering time was more genetically variable, pointing to the importance of indirect selection on mutations through their pleiotropic effects on multiple phenotypes. Finally, mutations in hub genes with greater connectedness in their regulatory networks had greater effects on both phenotypes and fitness. Together, these findings indicate that large-effect mutations may persist in populations because they influence traits that are adaptive only under specific environmental conditions. Understanding their evolutionary dynamics therefore requires measuring their effects in multiple natural environments. 
    more » « less