skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 9, 2026

Title: Supercritical preparation of doped (111) facetted nickel oxide for the oxygen evolution reaction
Herein a unique NiO(111) nanosheet pre-catalyst has been doped with Fe, Mn, or Co to reduce its OER overpotential. Dopant inclusion resulted in changes to the NiO bulk and surface properties which resulted in varying activities towards the OER.  more » « less
Award ID(s):
2139971
PAR ID:
10637904
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
RSC Applied Interfaces
Volume:
2
Issue:
5
ISSN:
2755-3701
Page Range / eLocation ID:
1407 to 1416
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Controlling the 3-D morphology of nanocatalysts is one of the underexplored but important approaches for improving the sluggish kinetics of the oxygen evolution reaction (OER) in water electrolysis. This work reports a scalable, oil-based method based on thermal decomposition of organometallic complexes to yield highly uniform Ni–Fe-based nanocatalysts with a well-defined morphology ( i.e. Ni–Fe core–shell, Ni/Fe alloy, and Fe–Ni core–shell). Transmission electron microscopy reveals their morphology and composition to be NiO x –FeO x /NiO x core-mixed shell, NiO x /FeO x alloy, and FeO x –NiO x core–shell. X-ray techniques resolve the electronic structures of the bulk and are supported by electron energy loss spectroscopy analysis of individual nanoparticles. These results suggest that the crystal structure of Ni is most likely to contain α-Ni(OH) 2 and that the chemical environment of Fe is variable, depending on the morphology of the nanoparticle. The Ni diffusion from the amorphous Ni-based core to the iron oxide shell makes the NiO x –NiO x /FeO x core-mixed shell structure the most active and the most stable nanocatalyst, which outperforms the comparison NiO x /FeO x alloy nanoparticles expected to be active for the OER. This study suggests that the chemical environment of the mixed NiO x /FeO x alloy composition is important to achieve high electrocatalytic activity for the OER and that the 3-D morphology plays a key role in the optimization of the electrocatalytic activity and stability of the nanocatalyst for the OER. 
    more » « less
  2. Nickel oxide nanocubes with increased (100) surface facet presence (NiO(100)) were synthesized through a molten salt synthesis procedure in order to investigate the relationship between the surface facet and OER performance. 
    more » « less
  3. Abstract Developing low‐cost, high‐performance electro‐catalysts is essential for large‐scale application of electrochemical energy devices. In this article, reported are the findings in understanding and controlling oxygen defects in PrBa0.5Sr0.5Co1.5Fe0.5O5+δ(PBSCF) for significantly enhancing the rate of oxygen evolution reaction (OER) are reported. Utilizing surface‐sensitive characterization techniques and first‐principle calculations, it is found that excessive oxygen vacancies promote OHaffiliation and lower the theoretical energy for the formation of O* on the surface, thus greatly facilitating the OER kinetics. On the other hand, however, oxygen vacancies also increase the energy band gap and lower the O 2pband center of PBSCF, which may hinder OER kinetics. Still, careful tuning of these competing effects has resulted in enhanced OER activity for PBSCF with oxygen defects. This work also demonstrates that oxygen defects generated by different techniques have very different characteristics, resulting in different impacts on the activity of electrodes. In particular, PBSCF nanotubes after electrochemical reduction exhibit outstanding OER activity compared with the recently reported perovskite‐based catalysts. 
    more » « less
  4. Abstract This paper describes the development of mixed B-site pyrochlore Y2MnRuO7electrocatalyst for oxygen evolution reaction (OER) in acidic media, a challenge for the development of low-temperature electrolyzer for green hydrogen production. Recently, several theories have been developed to understand the reaction mechanism for OER, though there is an  uncertainty in most of the cases, due to the complex surface structures. Several key factors such as lattice oxygen, defect, electronic structure, oxidation state, hydroxyl group and conductivity were identified and shown to be important to the OER activity. The contribution of each factor to the performance however is often not well understood, limiting their impact in guiding the design of OER electrocatalysts. In this work, we showed mixed B-site pyrochlore Y2MnRuO7catalyst exhibits 14 times higher turnover frequency (TOF) than RuO2while maintaining a low overpotential of ~ 300 mV for the entire testing period of 24 h in acidic electrolyte. X-ray photoelectron spectroscopy (XPS) analysis reveals that this B-site mixed pyrochlore Y2MnRuO7has a higher oxidation state of Ru than those of Y2Ru2O7, which could be crucial for improving OER performance as the broadened and lowered Ru 4d band resulted from the B-site substitution by Mn is beneficial to the OER kinetics. 
    more » « less
  5. null (Ed.)
    Nickel nitride (Ni 3 N) is known as one of the promising precatalysts for the electrochemical oxygen evolution reaction (OER) under alkaline conditions. Due to its relatively low oxidation resistance, Ni 3 N is electrochemically self-oxidized into nickel oxides/oxyhydroxides (electroactive sites) during the OER. However, we lack a full understanding of the effects of Ni 3 N self-oxidation and Fe impurity incorporation into Ni 3 N from electrolyte towards OER activity. Here, we report on our examination of the compositional and structural transformation of Ni 3 N precatalyst layers on Ni foams (Ni 3 N/Ni foam) during extended periods of OER testing in Fe-purified and unpurified KOH media using both a standard three-electrode cell and a flow cell, and discuss their electrocatalytic properties. After the OER tests in both KOH media, the Ni 3 N surfaces were converted into amorphous, nano-porous nickel oxide/(oxy)hydroxide surfaces. In the Fe-purified electrolyte, a decrease in OER activity was confirmed after the OER test because of the formation of pure NiOOH with low OER activity and electrical conductivity. Conversely, in the unpurified electrolyte, a continuous increase in OER activity was observed over the OER testing, which may have resulted from the Fe incorporation into the self-oxidation-formed NiOOH. Our experimental findings revealed that Fe impurities play an essential role in obtaining notable OER activity using the Ni 3 N precatalyst. Additionally, our Ni 3 N/Ni foam electrode exhibited a low OER overpotential of 262 mV to reach a geometric current density of 10 mA cm geo −2 in a flow cell with unpurified electrolyte. 
    more » « less