Enrollment in computing at the college level has skyrocketed, and many institutions have responded by enacting competitive enrollment processes. However, little is known about the effects of enrollment policies on students' experiences. To identify relationships between those policies and students' experiences, we linked survey data from 1245 first-year students in 80 CS departments to a dataset of department policies. We found that competitive enrollment negatively predicts first-year students' perception of the computing department as welcoming, their sense of belonging, and their self-efficacy in computing. Both belonging and self-efficacy are known predictors of student retention in CS. In addition, these relationships are stronger for students without pre-college computing experience. Our classification of institutions as competitive is conservative, and false positives are likely. This biases our results and suggests that the negative relationships we found are an underestimation of the effects of competitive enrollment. 
                        more » 
                        « less   
                    This content will become publicly available on May 20, 2026
                            
                            The Benefits of Socially Responsible Computing in Early Computing Courses: A Multi-Institutional Study at Primarily Undergraduate Hispanic-Serving Institutions
                        
                    
    
            Background and Context.  Computing is considered a fundamental skill for civic engagement, self-expression, and employment opportunity. Despite this, there exist significant equity gaps in post-secondary computing enrollment and retention. Specifically, in the California State University (CSU) system, which serves close to half a million undergraduate students, students identifying as Hispanic/Latino make up a smaller percentage of CS majors than expected from the state’s overall population; and, once enrolled, tend to leave the CS major at higher rates than other students. Purpose.  We report on the impacts of a curricular intervention aimed at strengthening the sense of belonging of Hispanic/Latino students in computing, with the eventual goal of improving retention in computing majors for those students. Methods.  Working in an alliance of six universities within the CSU (five of which are designated as Hispanic-Serving Institutions), we have incorporated socially responsible computing across early CS courses. We aim for alignment between our curriculum and students’ communal goal orientations, and for coursework that attends to students’ interests, values, and cultural assets. Over a two-year-long study, we collected survey data to learn about the impact of our curricular intervention on students’ sense of belonging and perceived learning and agency. Findings.  We found that students generally reported high communal goal orientations and, at the campuseswithoutcompetitive enrollment policies, our intervention had a significant positive impact on students’ senses of belonging. This effect was observed between control and treatment terms as well as within treatment terms. We also note that Hispanic/Latino students were more likely than other students to report that non-curricular factors like work and family obligations interfered with their learning, and appeared to experience slightly stronger benefits from the intervention. Implications.  Our data suggest positive outcomes for integrating socially responsible computing into early CS courses, especially for Hispanic/Latino students at certain Primarily Undergraduate Institutions (PUIs). Unlike much prior research, we found that conducting studies outside of Primarily White Institutions (PWIs) can provide new insights into the impact of curricular interventions on student experience and retention. Our varying results by campus suggest that factors such as campus population, acceptance rate, and departmental enrollment policies ought to also be taken into account in studies that aim to broaden participation in computing. Would results from prior research on recruitment and retention of Hispanic/Latino students or other underrepresented students look different if such studies were replicated at institutions with different demographics and enrollment policies? 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10638035
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Computing Education
- Volume:
- 25
- Issue:
- 2
- ISSN:
- 1946-6226
- Page Range / eLocation ID:
- 1 to 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract BackgroundThe demand for engineers in the workforce continues to rise, which requires increased retention and degree completion at the undergraduate level. Engineering educators need to better understand opportunities to retain students in engineering majors. A strong sense of belonging in engineering represents one important contributor to persistence. However, research has not investigated how academic help-seeking behaviors relate to belonging and downstream outcomes, such as persistence in engineering. Interventions to support and develop belonging show promise in increasing student retention, with particularly positive influences on women, Black, Latino/a/x, and indigenous students. As part of a larger research project, a quasi-experimental intervention to develop a classroom ecology of belonging was conducted at a large Midwestern university in a required first-year, second-semester engineering programming course. The 45-min intervention presented students with stories from past students and peers to normalize academic challenges within the ecology of the classroom as typical and surmountable with perseverance, time, and effort. ResultsWith treatment (n = 737) and control (n = 689) participant responses, we investigated how the intervention condition affected students' comfort with seeking academic help and feeling safe being wrong in class as influences on belonging. Using path analysis, a form of structural equation modeling, we measured the influence of these attitudinal variables on belonging and the influence of belonging beyond a student’s grade point average on enrollment as an engineering major the following fall. The path analysis supports the importance of academic help-seeking and feeling safe to be wrong for belonging, as well as the importance of belonging on continued enrollment. A group path analysis compared the treatment and control groups and demonstrated the positive impact of the intervention on enrollment for the treatment participants. ConclusionsThe analyses demonstrate the importance of academic help-seeking in students’ sense of belonging in the classroom with implications for identifying effective tools to improve students’ sense of belonging through supporting help-seeking behaviors.more » « less
- 
            Socially Responsible Computing (SRC) education entails the infusion of Computer Science (CS) education with interwoven attention to ethical, social, and political issues to position students to reflect and take action individually and collaboratively to create a more just world. Our approach to SRC supports students to explore computing design/development in early CS courses with a communal goal orientation (in contrast to agentic/individualized), shown to improve achievement and retention for students with identities that are minoritized in CS. Grounded in our own experiences as co-developers and implementers of this pedagogical transformation and as co-facilitators of a Faculty Learning Community (FLC) across six minority-serving institutions in California, we share how we use an iterative design and implementation process modeled from social design experimentation as research and development method. Initial results are presented as a set of promising practices for incorporating SRC into introductory CS courses: 1) choose the domain mindfully; 2) design for synergy with technical material; 3) scaffold for inclusivity; 4) structure with a framework; 5) avoid othering SRC elements; and 6) reuse and build on existing resources. We share how these promising practices guide our efforts; how they can address challenges and concerns for new and continuing SRC implementers; and the ways in which we have and will continue to test and co-design this approach.more » « less
- 
            Computer Science (CS) is not introduced equitably across K-12 schools, yet it is increasingly a necessary skill regardless of vocational pathway. Co-curricular activities such as summer camps have become a popular way to introduce CS to K-12 students. Researchers at our institution, through partnerships with other educational institutions and practitioners, developed a transdisciplinary approach of teaching CS in K-12 informal learning environments. Building on positive results in the K-12 informal learning environment, researchers are exploring the applicability of the transdisciplinary modules in formal instruction for early college learners in CS0 and CS1 courses. This paper explores self-efficacy data collected from multiple CS0 and CS1 courses. Learners include freshmen in computing majors and in non-computing majors. We compare their self efficacy growth in computing across race and gender, considering their formal or informal CS education experiences prior to entering college. This work is a part of a larger effort to redesign CS0 and CS1 courses to introduce more complex concepts and important design concepts such as parallel and distributed computing earlier in the curriculum. The authors’ longer-term goal is to investigate active learning strategies that will introduce higher level computer science topics early in the curriculum to enable students to recognize content applicability earlier in their college pathway.more » « less
- 
            Abstract BackgroundEngineering requires new solutions to improve undergraduate performance outcomes, including course grades and continued enrollment in engineering pathways. Belonging and engineering role identity have long been associated with successful outcomes in engineering, including academic success, retention, and well‐being. PurposeWe measure the relationships between belonging and role identity at the beginning of a first‐year engineering course with course grade and continued enrollment in engineering courses. We test the effect of an ecological belonging intervention on student belonging, course grade, and persistence. MethodStudents (n = 834) reported their sense of belonging in engineering, cross‐racial experiences, engineering performance/competence, interest in engineering, and engineering recognition before and after an in‐class intervention to improve classroom belonging ecology. Through a series of longitudinal multigroup path analyses, a form of structural equation modeling, we tested the predictive relationships of the measured constructs with engineering identity and investigated differences in these relationships by student gender and race/ethnicity. FindingsThe proposed model predicts course grades and continued enrollment, providing insight into the potential for interventions to support first‐year engineering students. Group analysis results demonstrate the difference in the function of these psychosocial measures for women and Black, Latino/a/x, and Indigenous (BLI) students, providing insights into the potential importance of sociocultural interventions within engineering classrooms to improve the engineering climate, engagement, and retention of students. ImplicationsThe results highlight the need for more specific, nuanced theoretical investigations of how marginalized students experience the engineering environment and develop social belonging and engineering role identity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
