Context.The mechanisms regulating the transport and energization of charged particles in space and astrophysical plasmas are still debated. Plasma turbulence is known to be a powerful particle accelerator. Large-scale structures, including flux ropes and plasmoids, may contribute to confining particles and lead to fast particle energization. These structures may also modify the properties of the turbulent, nonlinear transfer across scales. Aims.We aim to investigate how large-scale flux ropes are perturbed and, simultaneously, how they influence the nonlinear transfer of turbulent energy toward smaller scales. We then intend to address how these structures affect particle transport and energization. Methods.We adopted magnetohydrodynamic simulations perturbing a large-scale flux rope in solar-wind conditions and possibly triggering turbulence. Then, we employed test-particle methods to investigate particle transport and energization in the perturbed flux rope. Results.The large-scale helical flux rope inhibits the turbulent cascade toward smaller scales, especially if the amplitude of the initial perturbations is not large (∼5%). In this case, particle transport is inhibited inside the structure. Fast particle acceleration occurs in association with phases of trapped motion within the large-scale flux rope. 
                        more » 
                        « less   
                    This content will become publicly available on January 1, 2026
                            
                            Noble Metal Metaplasmonics
                        
                    
    
            We introduce metaplasmonics, a novel plasmonic modality with a host of appealing properties. Using ultrathin perforated nanoribbons we demonstrate large confinement, high quality factors, and large near-field enhancements across a broad range of infrared wavelengths. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2119302
- PAR ID:
- 10638043
- Publisher / Repository:
- Optica Publishing Group
- Date Published:
- ISBN:
- 978-1-957171-50-0
- Page Range / eLocation ID:
- FF127_6
- Format(s):
- Medium: X
- Location:
- Long Beach, California
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Large and small mammalian herbivores are present in most vegetated areas in the Arctic and often have large impacts on plant community composition and ecosystem functioning. The relative importance of different herbivores and especially how their specific impact on the vegetation varies across the Arctic is however poorly understood.Here, we investigate how large and small herbivores influence vegetation density and plant community composition in four arctic vegetation types in Scandinavia and Alaska. We used a unique set of exclosures, excluding only large (reindeer and muskoxen) or all mammalian herbivores (also voles and lemmings) for at least 20 years.We found that mammalian herbivores in general decreased leaf area index, NDVI, and abundance of vascular plants in all four locations, even though the strength of the effect and which herbivore type caused these effects differed across locations. In three locations, herbivore presence caused contrasting plant communities, but not in the location with lowest productivity. Large herbivores had a negative effect on plant height, whereas small mammalian herbivores increased species diversity by decreasing dominance of the initially dominating plant species. Above‐ or belowground disturbances caused by herbivores were found to play an important role in shaping the vegetation in all locations.Synthesis:Based on these results, we conclude that both small and large mammalian herbivores influence vegetation in Scandinavia and Alaska in a similar way, some of which can mitigate effects of climate change. We also see important differences across locations, but these depend rather on local herbivore and plant community composition than large biogeographical differences among continents.more » « less
- 
            We consider the multiparameter random simplicial complex as a higher dimensional extension of the classical Erdős–Rényi graph. We investigate appearance of “unusual” topological structures in the complex from the point of view of large deviations. We first study upper tail large deviation probabilities for subcomplex counts, deriving the order of magnitude of such probabilities at the logarithmic scale precision. The obtained results are then applied to analyze large deviations for the number of simplices of the multiparameter simplicial complexes. Finally, these results are also used to deduce large deviation estimates for Betti numbers of the complex in the critical dimension.more » « less
- 
            Abstract Large grazers modify vegetated ecosystems and are increasingly viewed as keystone species in trophic rewilding schemes. Yet, as their ecosystem influences are context‐dependent, a crucial challenge is identifying where grazers sustain, versus undermine, important ecosystem properties and their resilience.Previous work in diverse European saltmarshes found that, despite changing plant and invertebrate community structure, grazers do not suppress below‐ground properties, including soil organic carbon (SOC). We hypothesised that, in contrast, eastern US saltmarshes would be sensitive to large grazers as extensive areas are dominated by a single grass,Spartina alterniflora. We predicted that grazers would reduce above‐ and below‐groundSpartinabiomass, suppress invertebrate densities, shift soil texture and ultimately reduce SOC concentration.We tested our hypotheses using a replicated 51‐month large grazer (horse) exclusion experiment in Georgia, coupled with observations of 14 long‐term grazed sites, spanning ~1000 km of the eastern US coast.Grazer exclusion quickly led to increasedSpartinaheight, cover and flowering, and increased snail density. Changes in vegetation structure were reflected in modified soil texture (reduced sand, increased clay) and elevated root biomass, yet we found no response of SOC. Large grazer exclusion also reduced drought‐associated vegetation die‐off.We also observed vegetation shifts in sites along the eastern US seaboard where grazing has occurred for hundreds of years. Unlike in the exclusion experiment, long‐term grazing was associated with reduced SOC. A structural equation model implicated grazing by revealing reduced stem height as a key driver of reduced soil organic carbon.Synthesis: These results illustrate the context dependency of large grazer impacts on ecosystem properties in coastal wetlands. In contrast to well‐studied European marshes, eastern US marshes are dominated and structured by a single foundational grass species resulting in vegetation and soil properties being more sensitive to grazing. Coastal systems characterised by a single foundation species might be inherently vulnerable to large grazers and lack resilience in the face of other disturbances, underlining that frameworks to explain and predict large grazer impacts must account for geographic variation in ecosystem structure.more » « less
- 
            This paper concerns the analysis of large quantum states. It is a notoriously difficult problem to quantify separability of quantum states, and for large quantum states, it is unfeasible. Here we posit that when quantum states are large, we can deduce reasonable expectations for the complex structure of non-classical multipartite correlations with surprisingly little information about the state. We show, with pegagogical examples, how known results from combinatorics can be used to reveal the expected structure of various correlations hidden in the ensemble described by a state.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
