skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 22, 2026

Title: Interactive AI Tutors for Training the Workforce of the Future
The need to train new workers effectively and upskill the existing workforce is a challenge faced by almost every industry across the globe. The healthcare industry, in particular, is confronting a crisis. The World Health Organization (WHO) projects a shortage of 10 million healthcare workers by 2030. However, according to the Future of Jobs Report by the World Economic Forum, only half of the workers have access to training and learning opportunities. To sustain a resilient workforce and to protect the health of the world’s population, my thesis looks at using AI and robots to accelerate human learners’ acquisition of workforce skills. Specifically, I develop novel Explainable AI (XAI) algorithms to automate training to enable workers to collaborate with autonomous robots - a trend that is fast-growing. I also use statistical models to model human learner cognitive processes to create Human-Robot Interaction (HRI) systems to generate effective instructions tailored to individual learners. In addition to driving technical advances, my research is having a positive societal impact. I collaborate with Houston Methodist Hospital to create a first-of-its-kind robotic tutor for clinical nursing education to reduce healthcare-associated infections.  more » « less
Award ID(s):
2326390
PAR ID:
10638064
Author(s) / Creator(s):
Editor(s):
Unhelkar, Vaibhav
Publisher / Repository:
Rice University
Date Published:
Subject(s) / Keyword(s):
Artificial Intelligence Robotics Intelligent Tutoring Explainable AI Human-Robot Interaction
Format(s):
Medium: X
Institution:
Rice University
Sponsoring Org:
National Science Foundation
More Like this
  1. With the fast development of Industry 4.0, the ways in which manufacturing workers handle machines, materials, and products also change drastically. Such changes post several demanding challenges to the training of future workforce. First, personalized manufacturing will lead to small batch and fast changing tasks. The training procedure must demonstrate agility. Second, new interfaces to interact with human or robots will change the training procedure. Last but not least, in addition to handling the physical objects, a worker also needs to be trained to digest and respond to rich data generated at the manufacturing site. To respond to these challenges, in this paper we describe the design of an AI-assisted training platform for manufacturing workforce. The platform will collect rich data from both machines and workers. It will capture and analyze both macro and micro movement of trainees with the help of AI algorithms. At the same time, training for interaction with robot/cobot will also be covered. Mixed reality will be used to create in-situ experiences for the trainee. 
    more » « less
  2. This study aimed to investigate the key technical and psychological factors that impact the architecture, engineering, and construction (AEC) professionals’ trust in collaborative robots (cobots) powered by artificial intelligence (AI). This study seeks to address the critical knowledge gaps surrounding the establishment and reinforcement of trust among AEC professionals in their collaboration with AI-powered cobots. In the context of the construction industry, where the complexities of tasks often necessitate human–robot teamwork, understanding the technical and psychological factors influencing trust is paramount. Such trust dynamics play a pivotal role in determining the effectiveness of human–robot collaboration on construction sites. This research employed a nationwide survey of 600 AEC industry practitioners to shed light on these influential factors, providing valuable insights to calibrate trust levels and facilitate the seamless integration of AI-powered cobots into the AEC industry. Additionally, it aimed to gather insights into opportunities for promoting the adoption, cultivation, and training of a skilled workforce to effectively leverage this technology. A structural equation modeling (SEM) analysis revealed that safety and reliability are significant factors for the adoption of AI-powered cobots in construction. Fear of being replaced resulting from the use of cobots can have a substantial effect on the mental health of the affected workers. A lower error rate in jobs involving cobots, safety measurements, and security of data collected by cobots from jobsites significantly impact reliability, and the transparency of cobots’ inner workings can benefit accuracy, robustness, security, privacy, and communication and result in higher levels of automation, all of which demonstrated as contributors to trust. The study’s findings provide critical insights into the perceptions and experiences of AEC professionals toward adoption of cobots in construction and help project teams determine the adoption approach that aligns with the company’s goals workers’ welfare. 
    more » « less
  3. Online education is on the rise in the US and abroad and provides a convenient form of knowledge transfer to people who cannot be full- and or even part-time students at community colleges or universities. This factor impacts industry representatives, displaced workers, and low-income learners. Usually, online education consists of online lectures and/or tutorials designed so users can comprehend the studied subject. The missing piece of online education is the lack of hands-on activities. To address this issue, Michigan Tech and West Shore Community College collaborate on researching, developing, and implementing a State-of-the-Art Teleoperated Robotic Workcell (TRW) to enable enhanced remote training for industrial robots. The system is designed to provide training opportunities to college students, industry representatives, and displaced workers wishing to retool their skills and become more competitive in the job market. 
    more » « less
  4. This report will discuss implementing artificial intelligence in healthcare. Artificial Intelligence would be beneficial to healthcare because of the endless opportunities it provides. AI can be used to help detect and cure diseases, help patients with a path to treatment and even assist doctors with surgeries. Within this paper I will talk to you about the benefits of AI in healthcare and how it can be implemented using cyber security. In addition, I will conduct interviews with doctors and nurses to hear their perspective on AI in hospitals and how it is needed as well. As well as create a survey for nursing students at my university to see what their viewpoints are on adding AI unto the field of medicine. The best method to incorporate both user input and research into this paper is to use user input to back up the research. User input will be great addition because it gives the readers a real-world opinion on if this topic is valid. 
    more » « less
  5. Yan, C; Chai, H; Sun, T; Yuan, PF (Ed.)
    Abstract. The building industry is facing environmental, technological, and economic challenges, placing significant pressure on preparing the workforce for Industry 4.0 needs. The fields of Architecture, Engineering, and Construction (AEC) are being reshaped by robotics technologies which demand new skills and creating disruptive change to job markets. Addressing the learning needs of AEC students, professionals, and industry workers is critical to ensuring the competitiveness of the future workforce. In recent years advancements in Information Technology, Augmented Reality (AR), Virtual Reality (VR), and Artificial Intelligence (AI) have led to new research and theories on virtual learning environments. In the AEC fields researchers are beginning to rethink current robotics training to counteract costly and resource-intensive in-person learning. However, much of this work has been focused on simulation physics and has yet to adequately address how to engage AEC learners with different learning abilities, styles, and diverse backgrounds.This paper presents the advantages and difficulties associated with using new technologies to develop virtual reality (VR) learning games for robotics. It describes an ongoing project for creating performance driven curriculum. Drawing on the Constructivist Learning Theory, the affordances of Adaptive Learning Systems, and data collection methods from the VR game environment, the project provides a customized and performance-oriented approach to carrying out practical robotics tasks in real-world scenarios. 
    more » « less