skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing Trust in Construction AI-Powered Collaborative Robots Using Structural Equation Modeling
This study aimed to investigate the key technical and psychological factors that impact the architecture, engineering, and construction (AEC) professionals’ trust in collaborative robots (cobots) powered by artificial intelligence (AI). This study seeks to address the critical knowledge gaps surrounding the establishment and reinforcement of trust among AEC professionals in their collaboration with AI-powered cobots. In the context of the construction industry, where the complexities of tasks often necessitate human–robot teamwork, understanding the technical and psychological factors influencing trust is paramount. Such trust dynamics play a pivotal role in determining the effectiveness of human–robot collaboration on construction sites. This research employed a nationwide survey of 600 AEC industry practitioners to shed light on these influential factors, providing valuable insights to calibrate trust levels and facilitate the seamless integration of AI-powered cobots into the AEC industry. Additionally, it aimed to gather insights into opportunities for promoting the adoption, cultivation, and training of a skilled workforce to effectively leverage this technology. A structural equation modeling (SEM) analysis revealed that safety and reliability are significant factors for the adoption of AI-powered cobots in construction. Fear of being replaced resulting from the use of cobots can have a substantial effect on the mental health of the affected workers. A lower error rate in jobs involving cobots, safety measurements, and security of data collected by cobots from jobsites significantly impact reliability, and the transparency of cobots’ inner workings can benefit accuracy, robustness, security, privacy, and communication and result in higher levels of automation, all of which demonstrated as contributors to trust. The study’s findings provide critical insights into the perceptions and experiences of AEC professionals toward adoption of cobots in construction and help project teams determine the adoption approach that aligns with the company’s goals workers’ welfare.  more » « less
Award ID(s):
2047138
PAR ID:
10537003
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Society of Civil Engineers
Date Published:
Journal Name:
Journal of Computing in Civil Engineering
Volume:
38
Issue:
3
ISSN:
0887-3801
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Turkan, Yelda; Louis, Joseph; Leite, Fernanda; Ergan, Semiha (Ed.)
    Construction technology researchers and forward-thinking companies are experimenting with collaborative robots (aka cobots), powered by artificial intelligence (AI), to explore various automation scenarios as part of the digital transformation of the industry. Intelligent cobots are expected to be the dominant type of robots in the future of work in construction. However, the black-box nature of AI-powered cobots and unknown technical and psychological aspects of introducing them to job sites are precursors to trust challenges. By analyzing the results of semi-structured interviews with construction practitioners using grounded theory, this paper investigates the characteristics of trustworthy AI-powered cobots in construction. The study found that while the key trust factors identified in a systematic literature review -conducted previously by the authors- resonated with the field experts and end users, other factors such as financial considerations and the uncertainty associated with change were also significant barriers against trusting AI-powered cobots in construction. 
    more » « less
  2. With the construction sector primed to incorporate such advanced technologies as artificial intelligence (AI), robots, and machines, these advanced tools will require a deep understanding of human–robot trust dynamics to support safety and productivity. Although other disciplines have broadly investigated human trust-building with robots, the discussion within the construction domain is still nascent, raising concerns because construction workers are increasingly expected to work alongside robots or cobots, and to communicate and interact with drones. Without a better understanding of how construction workers can appropriately develop and calibrate their trust in their robotic counterparts, the implementation of advanced technologies may raise safety and productivity issues within these already-hazardous jobsites. Consequently, this study conducted a systematic review of the human–robot trust literature to (1) understand human–robot trust-building in construction and other domains; and (2) establish a roadmap for investigating and fostering worker–robot trust in the construction industry. The proposed worker–robot trust-building roadmap includes three phases: static trust based on the factors related to workers, robots, and construction sites; dynamic trust understood via measuring, modeling, and interpreting real-time trust behaviors; and adaptive trust, wherein adaptive calibration strategies and adaptive training facilitate appropriate trust-building. This roadmap sheds light on a progressive procedure to uncover the appropriate trust-building between workers and robots in the construction industry. 
    more » « less
  3. Robots present an innovative solution to the construction industry’s challenges, including safety concerns, skilled worker shortages, and productivity issues. Successfully collaborating with robots requires new competencies to ensure safety, smooth interaction, and accelerated adoption of robotic technologies. However, limited research exists on the specific competencies needed for human—robot collaboration in construction. Moreover, the perspectives of construction industry professionals on these competencies remain underexplored. This study examines the perceptions of construction industry professionals regarding the knowledge, skills, and abilities necessary for the effective implementation of human—robot collaboration in construction. A two-round Delphi survey was conducted with expert panel members from the construction industry to assess their views on the competencies for human—robot collaboration. The results reveal that the most critical competencies include knowledge areas such as human—robot interface, construction robot applications, human—robot collaboration safety and standards, task planning and robot control system; skills such as task planning, safety management, technical expertise, human—robot interface, and communication; and abilities such as safety awareness, continuous learning, problemsolving, critical thinking, and spatial awareness. This study contributes to knowledge by identifying the most significant competencies for human—robot collaboration in construction and highlighting their relative importance. These competencies could inform the design of educational and training programs and facilitate the integration of robotic technologies in construction. The findings also provide a foundation for future research to further explore and enhance these competencies, ultimately supporting safer, more efficient, and more productive construction practices. 
    more » « less
  4. Powered exoskeletons have the potential to reduce the physical demands on construction workers and enhance their abilities, yet adoption of this technology has been limited in the US construction sector. To that end, this study aimed to identify the barriers to the adoption of powered exoskeletons in the US construction industry. Firstly, a literature review was conducted to identify commercially available powered exoskeletons suitable for construction. Concurrently,questionnaires were developed and distributed among construction practitioners to understand the challenges associated with the implementation of powered exoskeletons in the US construction industry. The results showed that concerns about usability and productivity gains were the main barriers to the adoption of exoskeletons in the construction sector. The findings of this study provide valuable insights for improving the adoption and implementation of powered exoskeletons in the US construction industry, which could enhance worker safety and productivity. 
    more » « less
  5. Introducing robots to future construction sites will impose extra uncertainties and necessitate workers’ situational awareness (SA) of them. While previous literature has suggested that system errors, trust changes, and time pressure may affect SA, the linkage between these factors and workers’ SA in the future construction industry is understudied. Therefore, this study aimed to fill the research gap by simulating a future bricklaying worker-robot collaborative task where participants experienced robot errors and time pressure during the interaction. The results indicated that robot errors significantly impacted subjects’ trust in robots. However, under time pressure in time-critical construction tasks, workers tended to recover their reduced trust in the faulty robots (sometimes over-trust) and reduce their situational awareness. The contributions of this study lie in providing insights into the importance of SA in future jobsites and the need for investigating effective strategies for better preparing future workers. 
    more » « less