skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reverse Engineering Protection Using Obfuscation Through Electromagnetic Interference
This paper discusses commonly used reverse engineering methods to illegally recreate printed circuit board (PCB) designs. A solution using transformative electronics is presented to prevent the discussed reverse engineering methods by obfuscating the design. The transformative electronics solution is employed in a specific application that results in a reverse engineered board to be incorrectly recreated, where the signals would be distorted due to added electromagnetic interference (EMI). The non-conductive vias that are part of the obfuscation would allow the inclusion of EMI generators that would not affect the circuit in an original design but would prevent copied designs from working correctly. A machine learning algorithm is being designed to optimize the placement of the EMI sources in an original PCB.  more » « less
Award ID(s):
1916756
PAR ID:
10638098
Author(s) / Creator(s):
; ;
Publisher / Repository:
World Scientific Publishing
Date Published:
Journal Name:
International Journal of High Speed Electronics and Systems
Volume:
31
Issue:
01n04
ISSN:
0129-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Coreless axial-flux permanent-magnet (AFPM) machines may be attractive options for high-speed and high-power density applications due to the elimination of core losses. In order to make full use of the advantages offered by these machines and avoid excessive eddy current losses in windings, advanced technologies for winding conductors need to be employed to suppress the eddy effect, such as the Litz wire and printed circuit board (PCB). In this paper, the best practices for designing Litz wire/PCB windings are discussed and a brief survey of state of the art PCB winding technology is provided. Three coreless AFPM machines are mainly considered. A design optimization procedure based on the multi-objective differential evolution algorithm and 3-dimensional (3D) finite element analysis (FEA) is proposed to take into account the ac winding losses of Litz wires and PCB traces in the machine design stage. Selected designs are being prototyped and will be tested with a customized test fixture. 
    more » « less
  2. null (Ed.)
    A widely-regarded approach in Printed Circuit Board (PCB) reverse engineering (RE) uses non-destructive Xray computed tomography (CT) to produce three-dimensional volumes with several slices of data corresponding to multi-layered PCBs. The noise sources specific to X-ray CT and variability from designers make it difficult to acquire the features needed for the RE process. Hence, these X-ray CT images require specialized image processing techniques to examine the various features of a single PCB to later be translated to a readable CAD format. Previously, we presented an approach where the Hough Circle Transform was used for initial feature detection, and then an iterative false positive removal process was developed specifically for detecting vias on PCBs. Its performance was compared to an off-the-shelf application of the Mask Region-based Convolutional Network (M-RCNN). M-RCNN is an excellent deep learning approach that is able to localize and classify numerous objects of different scales within a single image. In this paper, we present a version of M-RCNN that is fine-tuned for via detection. Changes include polygon boundary annotations on the single X-ray images of vias for training and transfer learning to leverage the full potential of the network. We discuss the challenges of detecting vias using deep learning, our working solution, and our experimental procedure. Additionally, we provide a qualitative evaluation of our approach and use quantitative metrics to compare the proposed approach with the previous iterative one. 
    more » « less
  3. When asked about how they deal with unforeseen problems, novice learners often describe a process of “trial and error.” This process might fairly be described as iteration, a critical step in the design process, but falls short of the practices that engineering education needs to develop. In the face of novel and multifaceted problems, future engineers must be comfortable and competent not just trying again, but identifying failure points, troubleshooting, and running systematic tests with relevant data. To examine the abilities of novice designers to test and effectively refine ideas and prototypes, we conducted qualitative analysis of structured interviews, audio, video, and designs of 11 girls, ages 9 -11, working on computational papercrafts as part of a museum-based STEAM summer camp. The projects involved design and construction of expressive paper and cardboard sculptures with gears and linkages powered by servomotors. Over the course of one day, the girls generated designs inspired by a camp theme, then had to work with mechanics, electronics and craft to create working versions that would be displayed as part of a public exhibit. Computational papercraft was selected because it lowers cost and intimidation. Our design conjecture was that by making materials familiar and abundant, learners would have more relevant knowledge, could easily modify and replicate components, and would therefore be better able to recognize potential faults and more likely to engage in testing and refinement. We also supported design and troubleshooting with a customized circuit board and an online gear simulator. In the first stage of this study, we looked at what engineering practices emerged, given these conditions. We asked: What opportunities for testing and refinement did computational papercrafts open up? What resources and tools do young learners employ when testing and refining designs? Analysis showed that technical supports for testing and refinement were successful in supporting valued testing and refinement practices as youth pursued personal goals. Use of the simulator and customized microcontroller allowed for consideration of multiple alternatives and for “trial before error.” Learners were able to conduct focused tests on subsystems of their paper machines, and to make “small bets,” keeping initial ideas and designs fluid. Inexpensive materials also allowed them to test and refine at late project stages, without feeling that they were wasting time or materials. The analysis sheds light on young students practices of testing and refinement, and how to best support young people as they begin learning trajectories in engineering. The approach is especially relevant within making-oriented engineering education and other settings working to broaden participation in engineering. 
    more » « less
  4. As the crisis of confidence and trust in overseas foundries arises, the industry and academic community are paying increasing attention to Printed Circuit Board (PCB) security. PCB, the backbone of any electronic system hardware, always draws attackers’ attention as it carries system and design information. Numerous ways of PCB tampering (e.g., adding/replacing a component, eavesdropping on a trace and bypassing a connection) can lead to more severe problems, such as Intellectual Property (IP) violation, password leaking, the Internet of Things (IoT) attacks or even more. This paper proposes a technique of active self-defense PCB modules with zero performance overhead. Those protection modules will only be activated when the boards are exposed to the attacks. A set of PCBs with proposed protection modules is fabricated and tested to prove the effectiveness and efficiency of the techniques. 
    more » « less
  5. Untrusted third parties in commercial-off-the-shelf (COTS) printed circuit board (PCB) supply chains may poison PCBs with hardware, firmware, and software implants. Hence, we focus on detection of malicious implants in PCBs. State-of-the-art hardware Trojan detection methods require a golden PCB system/model to detect malicious implants and do not scale to large-scale COTS PCB systems. We map a COTS PCB system to a graph and propose a golden-free methodology comprising a graph-based mathematical construction on node and edge equivalences, and clustering of identical nodes and paths and validation of hypothesized statistical properties on measured sidechannel data. We evaluate the methodology on a multi-PCB testbed with hierarchically networked PCB devices and several types of Trojans. 
    more » « less