The combination of precision control with wide tunability remains a challenge for the fabrication of porous nanomaterials suitable for studies of nanostructure–behavior relationships. Polymer micelle templates broadly enable porous materials, however micelle equilibration hampers independent pore and wall size control. Persistent micelle templates (PMT) have emerged as a kinetic controlled platform that uniquely decouples the control of pore and wall dimensions. Here, chain exchange is inhibited to preserve a constant template dimension (pore size) despite the shifting equilibrium while materials are added between micelles. Early PMT demonstrations were synthesis intensive with limited 1–1.3× pore size tuning for a given polymer. Here we demonstrate PMT swelling with homopolymer enables 1–3.2× (13.3–41.9 nm) pore size variation while maintaining a monomodal distribution with up to 250 wt% homopolymer, considerably higher than the ∼90 wt% limit found for equilibrating micelles. These swollen PMTs enabled nanomaterial series with constant pore size and precision varied wall-thickness. Kinetic size control here is unexpected since the homopolymer undergoes dynamic exchange between micelles. The solvent selection influenced the time window before homopolymer phase separation, highlighting the importance of considering homopolymer–solvent interactions. This is the first PMT demonstration with wide variation of both the pore and wall dimensions using a single block polymer. Lastly this approach was extended to a 72 kg mol −1 block polymer to enable a wide 50–290 nm range of tunable macropores. Here the use of just two different block polymers and one homopolymer enabled wide ranging pore sizes spanning from 13.3–290 nm (1–22×).
more »
« less
This content will become publicly available on September 16, 2026
Growth of cylindrical micelles and their use to prepare porous materials with tailored dimensions and alignment
Cylindrical templates enable materials with cylindrical pores. Cylindrical persistent micelle templates enable independent control of pore and wall dimensions where increasing the material content (TiO2) increases the wall thickness alone.
more »
« less
- Award ID(s):
- 1752615
- PAR ID:
- 10638268
- Publisher / Repository:
- RSC
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 13
- Issue:
- 36
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 30467 to 30479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Cylindrical developable mechanisms are devices that conform to and emerge from a cylindrical surface. These mechanisms can be formed or cut from the cylinder wall itself. This paper presents a study on adapting traditional hinge options to achieve revolute motion in these mechanisms. A brief overview of options is given, including classical pin hinges, small-length flexural pivots, initially curved beams, and an adaptation of the membrane thickness-accommodation technique. Curved Lamina Emergent Torsional (LET) joints are then evaluated in detail, and a thin-walled modeling assumption is checked analytically and empirically. A small-scale cylindrical developable mechanism is then evaluated with Nitinol curved LET joints.more » « less
-
Abstract The predictive self‐assembly of tunable nanostructures is of great utility for broad nanomaterial investigations and applications. The use of equilibrium‐based approaches however prevents independent feature size control. Kinetic‐controlled methods such as persistent micelle templates (PMTs) overcome this limitation and maintain constant pore size by imposing a large thermodynamic barrier to chain exchange. Thus, the wall thickness is independently adjusted via addition of material precursors to PMTs. Prior PMT demonstrations added water‐reactive material precursors directly to aqueous micelle solutions. That approach depletes the thermodynamic barrier to chain exchange and thus limits the amount of material added under PMT‐control. Here, an ex situ hydrolysis method is developed for TiO2that mitigates this depletion of water and nearly decouples materials chemistry from micelle control. This enables the widest reported PMT range (M:T = 1.6–4.0), spanning the gamut from sparse walls to nearly isolated pores with ≈2 Å precision adjustment. This high‐resolution nanomaterial series exhibits monotonic trends where PMT confinement within increasing wall‐thickness leads to larger crystallites and an increasing extent of lithiation, reaching Li0.66TiO2. The increasing extent of lithiation with increasing anatase crystallite dimensions is attributed to the size‐dependent strain mismatch of anatase and bronze polymorph mixtures.more » « less
-
InGaN templates have recently attracted interest due to their ability to reduce strain in the quantum wells and to induce a red shift in the emission wavelength. For such technology to be competitive, it should outperform the traditional technology for LEDs grown on GaN substrates and offer improved output characteristics. InGaN based LEDs on InyGa1−yN templates with varying In-content of 8% ≤ y ≤ 12% are studied for the same emission wavelength. The electroluminescence, optical output power, and external quantum efficiency of the LEDs are investigated as a function of the In-content in the templates. LEDs on InGaN templates with In-content of 8–10% show better performance than LEDs grown on GaN. This enhancement is attributed to improved radiative recombination as a result of the reduced strain in the quantum wells. However, templates with In-content of ∼10.5% and ∼11% show inferior performance to the LEDs on GaN because the deterioration from the increased defects from the template is stronger than the improvement in the radiative recombination. It can be concluded that the InGaN templates with 8–10% offer a technology for LEDs that is outperforming the traditional GaN technology.more » « less
An official website of the United States government
