Abstract Regio‐ and stereoselective distal allylic/benzylic C−H functionalization of allyl and benzyl silyl ethers was achieved using rhodium(II) carbenes derived from N‐sulfonyltriazoles and aryldiazoacetates as carbene precursors. The bulky rhodium carbenes led to highly site‐selective functionalization of less activated allylic and benzylic C−H bonds even in the presence of electronically preferred C−H bonds located α to oxygen. The dirhodium catalyst Rh2(S‐NTTL)4is the most effective chiral catalyst for triazole‐derived carbene transformations, whereas Rh2(S‐TPPTTL)4works best for carbenes derived from aryldiazoacetates. The reactions afford a variety of δ‐functionalized allyl silyl ethers with high diastereo‐ and enantioselectivity. The utility of the present method was demonstrated by its application to the synthesis of a 3,4‐disubstitutedl‐proline scaffold. 
                        more » 
                        « less   
                    This content will become publicly available on August 27, 2026
                            
                            Heterolytic Cleavage of L n Pd–SiR 3 + Bonds Enable the Ring-Opening C–C Functionalization of Nonstrained Ethers
                        
                    
    
            Silyl palladium cations (R3P)2Pd–SiR3+ catalyze the ring opening, C–C bond forming, and functionalization of 5- and 6-membered cyclic allyl ethers with O-silyl nucleophiles. Conditions for high regio-control are achieved by adjustments in the phosphine electronics, with the identity of the 2-substituent also influencing the functionalization location in unsymmetrical furans. Allyl alcohols are obtained with a regio-preference for terminal addition with unsubstituted ethers with E-products being obtained with XantPhos and Z- with (4-CF3–Ar)3 ligation. Styrenes dominate with phenyl-substituted dihydrofurans, and for 2-alkyl-substituted, secondary alcohols result from an allyl migration pathway. Mechanistic studies demonstrate the feasibility of Pd–Si+ bonds to facilitate C–O activation to yield π-allyl intermediates, and for one substrate class to also sequence π-allyl migration prior to nucleophilic addition. DFT calculations demonstrated the viability of silylium-activated ether as a competent ligand for Pd(0). 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2154432
- PAR ID:
- 10638273
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 147
- Issue:
- 34
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 31429 to 31437
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The synthesis of alkylphosphine-substituted α-diimine (DI) ligands and their subsequent addition to Ni(COD) 2 allowed for the preparation of ( iPr2PPr DI)Ni and ( tBu2PPr DI)Ni . The solid state structures of both compounds were found to feature a distorted tetrahedral geometry that is largely consistent with the reported structure of the diphenylphosphine-substituted variant, ( Ph2PPr DI)Ni . To explore and optimize the synthetic utility of this catalyst class, all three compounds were screened for benzaldehyde hydrosilylation activity at 1.0 mol% loading over 3 h at 25 °C. Notably, ( Ph2PPr DI)Ni was found to be the most efficient catalyst while phenyl silane was the most effective reductant. A broad scope of aldehydes and ketones were then hydrosilylated, and the silyl ether products were hydrolyzed to afford alcohols in good yield. When attempts were made to explore ester reduction, inefficient dihydrosilylation was noted for ethyl acetate and no reaction was observed for several additional substrates. However, when an equimolar solution of allyl acetate and phenyl silane was added to 1.0 mol% ( Ph2PPr DI)Ni , complete ester C–O bond hydrosilylation was observed within 30 min at 25 °C to generate propylene and PhSi(OAc) 3 . The scope of this reaction was expanded to include six additional allyl esters, and under neat conditions, turnover frequencies of up to 990 h −1 were achieved. This activity is believed to be the highest reported for transition metal-catalyzed ester C–O bond hydrosilylation. Proposed mechanisms for ( Ph2PPr DI)Ni -mediated carbonyl and allyl ester C–O bond hydrosilylation are also discussed.more » « less
- 
            Abstract While enantioenriched alcohols are highly significant in medicinal chemistry, total synthesis, and materials science, the stereoselective synthesis of tertiary alcohols with two adjacent stereocenters remains a formidable challenge. In this study, we present a dual catalysis approach utilizing photoredox and nickel catalysts to enable the unprecedented chemoselective functionalization of tertiary allylic C−H bonds in allyl ethers instead of cleaving the C−O bond. The resulting allyl‐Ni intermediates can undergo coupling with various aldehydes, facilitating a novel enantioconvergent approach to access extensively functionalized homoallylicsec,tert‐vicinal diols frameworks. This protocol exhibits nice tolerance towards functional groups, a broad scope of substrates, excellent diastereo‐ and enantioselectivity (up to 20 : 1 dr, 99 %ee). Mechanistic studies suggested that allyl‐NiIIacts as the nucleophilic species in the coupling reaction with carbonyls.more » « less
- 
            null (Ed.)The cross-coupling of aryl esters has emerged as a powerful platform for the functionalization of otherwise inert acyl C–O bonds in chemical synthesis and catalysis. Herein, we report a combined experimental and computational study on the acyl Suzuki–Miyaura cross-coupling of aryl esters mediated by well-defined, air- and moisture-stable Pd( ii )–NHC precatalysts [Pd(NHC)(μ-Cl)Cl] 2 . We present a comprehensive evaluation of [Pd(NHC)(μ-Cl)Cl] 2 precatalysts and compare them with the present state-of-the-art [(Pd(NHC)allyl] precatalysts bearing allyl-type throw-away ligands. Most importantly, the study reveals [Pd(NHC)(μ-Cl)Cl] 2 as the most reactive precatalysts discovered to date in this reactivity manifold. The unique synthetic utility of this unconventional O–C(O) cross-coupling is highlighted in the late-stage functionalization of pharmaceuticals and sequential chemoselective cross-coupling, providing access to valuable ketone products by a catalytic mechanism involving Pd insertion into the aryl ester bond. Furthermore, we present a comprehensive study of the catalytic cycle by DFT methods. Considering the clear advantages of [Pd(NHC)(μ-Cl)Cl] 2 precatalysts on several levels, including facile one-pot synthesis, superior atom-economic profile to all other Pd( ii )–NHC catalysts, and versatile reactivity, these should be considered as the ‘first-choice’ catalysts for all routine applications in ester O–C(O) bond activation.more » « less
- 
            The phosphine-substituted α-diimine Ni precursor, ( Ph2PPr DI)Ni , has been found to catalyze alkene hydrosilylation in the presence of Ph 2 SiH 2 with turnover frequencies of up to 124 h −1 at 25 °C (990 h −1 at 60 °C). Moreover, the selective hydrosilylation of allylic and vinylic ethers has been demonstrated, even though ( Ph2PPr DI)Ni is known to catalyze allyl ester C–O bond hydrosilylation. At 70 °C, this catalyst has been found to mediate the hydrosilylation of ten different gem -olefins, with turnover numbers of up to 740 under neat conditions. Prior and current mechanistic observations suggest that alkene hydrosilylation takes place though a Chalk–Harrod mechanism following phosphine donor dissociation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
