Climate change will increase soil drying, altering microbial communities via increasing water stress and decreasing resource availability. The responses of these microbial communities to changing environments is likely governed by physiological tradeoffs between high yield, resource acquisition, and stress tolerance (Y-A-S framework). We leveraged a unique field experiment that manipulates both drought and carbon availability across two years and three land uses, and we used both metagenomic and bioassay indicators of the three microbial community traits to test the following hypotheses: 1. Drought increases microbial allocation to stress tolerance functions, at the expense of growth and resource acquisition. 2. Because microbes are resource-limited under drought, increased carbon will enable greater expression of stress tolerance. 3. All three key life history traits described in the YAS framework will trade off, especially when resources are limited. Drought did increase microbial physiological investment in stress tolerance (measured via trehalose production), but we saw few other changes in microbial communities under drought. Carbon addition increased resource acquisition (measured via enzyme activity and resource acquisition gene abundance) and stress tolerance (trehalose assay), but did so in both drought and average rainfall environments. We found no evidence of trait tradeoffs, as we found no significant negative correlations between traits (measured via bioassay and metagenomics). In summary, we found C addition, and to a lesser extent, drought, both altered microbial community function and functional genes. However, resources did not alter drought response in a way that was consistent with theory of life history tradeoffs.
more »
« less
Long-term climate establishes functional legacies by altering microbial traits
Abstract Long-term climate history can influence rates of soil carbon cycling but the microbial traits underlying these legacy effects are not well understood. Legacies may result if historical climate differences alter the traits of soil microbial communities, particularly those associated with carbon cycling and stress tolerance. However, it is also possible that contemporary conditions can overcome the influence of historical climate, particularly under extreme conditions. Using shotgun metagenomics, we assessed the composition of soil microbial functional genes across a mean annual precipitation gradient that previously showed evidence of strong climate legacies in soil carbon flux and extracellular enzyme activity. Sampling coincided with recovery from a regional, multi-year severe drought, allowing us to document how the strength of climate legacies varied with contemporary conditions. We found increased investment in genes associated with resource cycling with historically higher precipitation across the gradient, particularly in traits related to resource transport and complex carbon degradation. This legacy effect was strongest in seasons with the lowest soil moisture, suggesting that contemporary conditions—particularly, resource stress under water limitation—influences the strength of legacy effects. In contrast, investment in stress tolerance did not vary with historical precipitation, likely due to frequent periodic drought throughout the gradient. Differences in the relative abundance of functional genes explained over half of variation in microbial functional capacity—potential enzyme activity—more so than historical precipitation or current moisture conditions. Together, these results suggest that long-term climate can alter the functional potential of soil microbial communities, leading to legacies in carbon cycling.
more »
« less
- PAR ID:
- 10638328
- Publisher / Repository:
- NCBI
- Date Published:
- Journal Name:
- The ISME Journal
- Volume:
- 19
- Issue:
- 1
- ISSN:
- 1751-7362
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate variability and periodic droughts have complex effects on carbon (C) fluxes, with uncertain implications for ecosystem C balance under a changing climate. Responses to climate change can be modulated by persistent effects of climate history on plant communities, soil microbial activity, and nutrient cycling (i.e., legacies). To assess how legacies of past precipitation regimes influence tallgrass prairie C cycling under new precipitation regimes, we modified a long‐term irrigation experiment that simulated a wetter climate for >25 years. We reversed irrigated and control (ambient precipitation) treatments in some plots and imposed an experimental drought in plots with a history of irrigation or ambient precipitation to assess how climate legacies affect aboveground net primary productivity (ANPP), soil respiration, and selected soil C pools. Legacy effects of elevated precipitation (irrigation) included higher C fluxes and altered labile soil C pools, and in some cases altered sensitivity to new climate treatments. Indeed, decades of irrigation reduced the sensitivity of both ANPP and soil respiration to drought compared with controls. Positive legacy effects of irrigation on ANPP persisted for at least 3 years following treatment reversal, were apparent in both wet and dry years, and were associated with altered plant functional composition. In contrast, legacy effects on soil respiration were comparatively short‐lived and did not manifest under natural or experimentally‐imposed “wet years,” suggesting that legacy effects on CO2efflux are contingent on current conditions. Although total soil C remained similar across treatments, long‐term irrigation increased labile soil C and the sensitivity of microbial biomass C to drought. Importantly, the magnitude of legacy effects for all response variables varied with topography, suggesting that landscape can modulate the strength and direction of climate legacies. Our results demonstrate the role of climate history as an important determinant of terrestrial C cycling responses to future climate changes.more » « less
-
Abstract Soil moisture is a major driver of microbial activity and thus, of the release of carbon (C) into the Earth's atmosphere. Yet, there is no consensus on the relationship between soil moisture and microbial respiration, and as a result, moisture response functions are a poorly constrained aspect of C models. In addition, models assume that the response of microbial respiration to moisture is the same for all ecosystems, regardless of climate history, an assumption that many empirical studies have challenged. These gaps in understanding of the microbial respiration response to moisture contribute to uncertainty in model predictions.We review our understanding of what drives microbial moisture response, highlighting evidence that historical precipitation can influence both responses to moisture and sensitivity to drought. We present two hypotheses, the ‘climate history hypothesis’, where we predict that baseline moisture response functions change as a function of precipitation history, and the ‘drought legacy hypothesis’, in which we suggest that the intensity and frequency of historical drought have shaped microbial communities in ways that will control moisture responses to contemporary drought. Underlying mechanisms include biological selection and filtering of the microbial community by rainfall regimes, which result in microbial traits and trade‐offs that shape function.We present an integrated modelling and empirical approach for understanding microbial moisture responses and improving models. Standardized measures of moisture response (respiration rate across a range of moistures) and accompanying microbial properties are needed across sites. These data can be incorporated into trait‐based models to produce generalized moisture response functions, which can then be validated and incorporated into conventional and microbially explicit ecosystem models of soil C cycling. Future studies should strive to analyse realistic moisture conditions and consider the role of environmental factors and soil structure in microbial response.Microbes are the engines that drive C storage and are sensitive to changes in rainfall. A greater understanding of the factors that govern this sensitivity could be a key part of improving predictions of soil C dynamics, climate change and C‐climate feedbacks. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract Both chronic and acute drought alter the composition and physiology of soil microbiota by selecting for functional traits that preserve fitness in dry conditions. Currently, little is known about how the resulting precipitation legacy effects manifest at the molecular and physiological levels and how they influence neighboring plants, especially in the context of subsequent drought. We characterized metagenomes of six prairie soils spanning a steep precipitation gradient in Kansas, USA. By statistically controlling for variation in soil porosity and elemental profiles, we identified bacterial taxa and functional gene categories associated with precipitation. This microbial precipitation legacy persisted through a 5-month-long experimental drought and mitigated the negative physiological effects of acute drought for a wild grass species that is native to the precipitation gradient, but not for the domesticated crop species maize. In particular, microbiota with a low-precipitation legacy altered transcription of a subset of host genes that mediate transpiration and intrinsic water use efficiency during drought. Our results show how long-term exposure to water stress alters soil microbial communities with consequences for the drought responses of neighboring plants.more » « less
-
Both chronic and acute drought alter the composition and physiology of soil microbiota by selecting for functional traits that preserve fitness in dry conditions. Currently, little is known about how the resulting precipitation legacy effects manifest at the molecular and physiological 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 available under aCC-BY-NC-ND 4.0 International license. (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made bioRxiv preprint doi: https://doi.org/10.1101/2024.08.26.609769; this version posted June 23, 2025. The copyright holder for this preprint levels and how they influence neighboring plants, especially in the context of subsequent drought. We characterized metagenomes of six prairie soils spanning a steep precipitation gradient in Kansas, USA. By statistically controlling for variation in soil porosity and elemental profiles, we identified bacterial taxa and functional gene categories associated with precipitation. This microbial precipitation legacy persisted through a 5-month-long experimental drought and mitigated the negative physiological effects of acute drought for a wild grass species that is native to the precipitation gradient, but not for the domesticated crop species maize. In particular, microbiota with a low-precipitation legacy altered transcription of a subset of host genes that mediate transpiration and intrinsic water use efficiency during drought. Our results show how long-term exposure to water stress alters soil microbial communities with consequences for the drought responses of neighboring plants.more » « less
An official website of the United States government

