Abstract Motivation Genome-wide profiles of chromatin accessibility and gene expression in diverse cellular contexts are critical to decipher the dynamics of transcriptional regulation. Recently, convolutional neural networks have been used to learn predictive cis-regulatory DNA sequence models of context-specific chromatin accessibility landscapes. However, these context-specific regulatory sequence models cannot generalize predictions across cell types. Results We introduce multi-modal, residual neural network architectures that integrate cis-regulatory sequence and context-specific expression of trans-regulators to predict genome-wide chromatin accessibility profiles across cellular contexts. We show that the average accessibility of a genomic region across training contexts can be a surprisingly powerful predictor. We leverage this feature and employ novel strategies for training models to enhance genome-wide prediction of shared and context-specific chromatin accessible sites across cell types. We interpret the models to reveal insights into cis- and trans-regulation of chromatin dynamics across 123 diverse cellular contexts. Availability and implementation The code is available at https://github.com/kundajelab/ChromDragoNN. Supplementary information Supplementary data are available at Bioinformatics online.
more »
« less
Evolutionary Dynamics of Chromatin Structure and Duplicate Gene Expression in Diploid and Allopolyploid Cotton
Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.
more »
« less
- Award ID(s):
- 2209085
- PAR ID:
- 10638371
- Editor(s):
- Purugganan, Michael
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Molecular Biology and Evolution
- Volume:
- 41
- Issue:
- 5
- ISSN:
- 0737-4038
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundGenetic and epigenetic perturbation of cis-regulatory sequences can shift patterns of gene expression and result in novel phenotypes. Phased genome assemblies now enable the local dissection of linkages between cis-regulatory sequences, including their epigenetic state, and allele-specific gene expression to further characterize gene regulation and resulting phenotypes in heterozygous genomes. ResultsWe assembled a locally phased genome for a mandarin hybrid named ‘Fairchild’ to explore the molecular signatures of allele-specific gene expression. With local genome phasing, genes with allele-specific expression were paired with haplotype-specific chromatin states, including levels of chromatin accessibility, histone modifications, and DNA methylation. We found that 30% of variation in allele-specific expression could be attributed to haplotype associated factors, with allelic levels of chromatin accessibility and three histone modifications in gene bodies having the most influence. Structural variants in promoter regions were also associated with allele-specific expression, including specific enrichments of hAT and MULE-MuDR DNA transposon sequences. Integration of haplotype-resolved genetic and epigenetic landscapes with high-throughput phenotypic analysis of fruit traits in a panel of 154 accessions with mandarin and pummelo ancestry revealed that trait-associated variants were enriched in regions of open chromatin. Mining of trait-associated variants uncovered a Gypsy retrotransposon insertion in a gene that regulates potassium transport and may contribute to the reduction in fruit size that is observed in mandarins. ConclusionsUsing a locally phased assembly of a heterozygous cultivar of citrus, we dissected the interplay between genetic variants and molecular phenotypes to reveal cis-regulatory sequences with potential functional effects on phenotypes relevant for genetic improvement.more » « less
-
Wittkopp, Patricia (Ed.)Abstract Chromatin configuration is highly dynamic during embryonic development in animals, exerting an important point of control in transcriptional regulation. Yet there exists remarkably little information about the role of evolutionary changes in chromatin configuration to the evolution of gene expression and organismal traits. Genome-wide assays of chromatin configuration, coupled with whole-genome alignments, can help address this gap in knowledge in several ways. In this study we present a comparative analysis of regulatory element sequences and accessibility throughout embryogenesis in three sea urchin species with divergent life histories: a lecithotroph Heliocidaris erythrogramma, a closely related planktotroph H. tuberculata, and a distantly related planktotroph Lytechinus variegatus. We identified distinct epigenetic and mutational signatures of evolutionary modifications to the function of putative cis-regulatory elements in H. erythrogramma that have accumulated nonuniformly throughout the genome, suggesting selection, rather than drift, underlies many modifications associated with the derived life history. Specifically, regulatory elements composing the sea urchin developmental gene regulatory network are enriched for signatures of positive selection and accessibility changes which may function to alter binding affinity and access of developmental transcription factors to these sites. Furthermore, regulatory element changes often correlate with divergent expression patterns of genes involved in cell type specification, morphogenesis, and development of other derived traits, suggesting these evolutionary modifications have been consequential for phenotypic evolution in H. erythrogramma. Collectively, our results demonstrate that selective pressures imposed by changes in developmental life history rapidly reshape the cis-regulatory landscape of core developmental genes to generate novel traits and embryonic programs.more » « less
-
Abstract BackgroundThe genetic information contained in the genome of an organism is organized in genes and regulatory elements that control gene expression. The genomes of multiple plants species have already been sequenced and the gene repertory have been annotated, however,cis-regulatory elements remain less characterized, limiting our understanding of genome functionality. These elements act as open platforms for recruiting both positive- and negative-acting transcription factors, and as such, chromatin accessibility is an important signature for their identification. ResultsIn this work we developed a transgenic INTACT [isolation of nuclei tagged in specific cell types] system in tetraploid wheat for nuclei purifications. Then, we combined the INTACT system together with the assay for transposase-accessible chromatin with sequencing [ATAC-seq] to identify open chromatin regions in wheat root tip samples. Our ATAC-seq results showed a large enrichment of open chromatin regions in intergenic and promoter regions, which is expected for regulatory elements and that is similar to ATAC-seq results obtained in other plant species. In addition, root ATAC-seq peaks showed a significant overlap with a previously published ATAC-seq data from wheat leaf protoplast, indicating a high reproducibility between the two experiments and a large overlap between open chromatin regions in root and leaf tissues. Importantly, we observed overlap between ATAC-seq peaks andcis-regulatory elements that have been functionally validated in wheat, and a good correlation between normalized accessibility and gene expression levels. ConclusionsWe have developed and validated an INTACT system in tetraploid wheat that allows rapid and high-quality nuclei purification from root tips. Those nuclei were successfully used to performed ATAC-seq experiments that revealed open chromatin regions in the wheat genome that will be useful to identify cis-regulatory elements. The INTACT system presented here will facilitate the development of ATAC-seq datasets in other tissues, growth stages, and under different growing conditions to generate a more complete landscape of the accessible DNA regions in the wheat genome.more » « less
-
Genome-wide association studies (GWAS) have mapped over 90% of disease- and quantitative-trait-associated variants within the non-coding genome. Non-coding regulatory DNA (e.g., promoters and enhancers) and RNA (e.g., 5′ and 3′ UTRs and splice sites) are essential in regulating temporal and tissue-specific gene expressions. Non-coding variants can potentially impact the phenotype of an organism by altering the molecular recognition of the cis-regulatory elements, leading to gene dysregulation. However, determining causality between non-coding variants, gene regulation, and human disease has remained challenging. Experimental and computational methods have been developed to understand the molecular mechanism involved in non-coding variant interference at the transcriptional and post-transcriptional levels. This review discusses recent approaches to evaluating disease-associated single-nucleotide variants (SNVs) and determines their impact on transcription factor (TF) binding, gene expression, chromatin conformation, post-transcriptional regulation, and translation.more » « less
An official website of the United States government

