skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 30, 2026

Title: Dark Patterns and Disloyal Design
Lawmakers have started to regulate “dark patterns,” understood to be design practices meant to influence technology users’ decisions through manipulative or deceptive means. Most agree that dark patterns are undesirable, but open questions remain as to which design choices should be subjected to scrutiny, much less the best way to regulate them. In this Article, we propose adapting the concept of dark patterns to better fit legal frameworks. Critics allege that the legal conceptualizations of dark patterns are overbroad, impractical, and counterproductive. We argue that law and policy conceptualizations of dark patterns suffer from three deficiencies: First, dark patterns lack a clear value anchor for cases to build upon. Second, legal definitions of dark patterns overfocus on individuals and atomistic choices, ignoring de minimis aggregate harms and the societal implications of manipulation at scale. Finally, the law has struggled to articulate workable legal thresholds for wrongful dark patterns. To better regulate the designs called dark patterns, lawmakers need a better conceptual framing that bridges the gap between design theory and the law’s need for clarity, flexibility, and compatibility with existing frameworks. We argue that wrongful self-dealing is at the heart of what most consider to be “dark” about certain design patterns. Taking advantage of design affordances to the detriment of a vulnerable party is disloyal. To that end, we propose disloyal design as a regulatory framing for dark patterns. In drawing from established frameworks that prohibit wrongful self-dealing, we hope to provide more clarity and consistency for regulators, industry, and users. Disloyal design will fit better into legal frameworks and better rally public support for ensuring that the most popular tools in society are built to prioritize human values.  more » « less
Award ID(s):
1956393
PAR ID:
10638376
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
https://www.repository.law.indiana.edu/ilj/vol100/iss4/3
Date Published:
Journal Name:
Indiana Law Journal
Volume:
100
Issue:
4
ISSN:
0019-6665
Page Range / eLocation ID:
3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Industry will take everything it can in developing artificial intelligence (AI) systems. We will get used to it. This will be done for our benefit. Two of these things are true and one of them is a lie. It is critical that lawmakers identify them correctly. In this Essay, I argue that no matter how AI systems develop, if lawmakers do not address the dynamics of dangerous extraction, harmful normalization, and adversarial self-dealing, then AI systems will likely be used to do more harm than good. Given these inevitabilities, lawmakers will need to change their usual approach to regulating technology. Procedural approaches requiring transparency and consent will not be enough. Merely regulating use of data ignores how information collection and the affordances of tools bestow and exercise power. A better approach involves duties, design rules, defaults, and data dead ends. This layered approach will more squarely address dangerous extraction, harmful normalization, and adversarial self-dealing to better ensure that AI deployments advance the public good. 
    more » « less
  2. Deceptive, manipulative, and coercive practices are deeply embedded in our digital experiences, impacting our ability to make informed choices and undermining our agency and autonomy. These design practices—collectively known as “dark patterns” or “deceptive patterns”—are increasingly under legal scrutiny and sanctions, largely due to the efforts of human-computer interaction scholars that have conducted pioneering research relating to dark patterns types, definitions, and harms. In this workshop, we continue building this scholarly community with a focus on organizing for action. Our aims include: (i) building capacity around specific research questions relating to methodologies for detection; (ii) characterization of harms; and (iii) creating effective countermeasures. Through the outcomes of the workshop, we will connect our scholarship to the legal, design, and regulatory communities to inform further legislative and legal action. 
    more » « less
  3. null (Ed.)
    A received wisdom is that automated decision-making serves as an anti-bias intervention. The conceit is that removing humans from the decision-making process will also eliminate human bias. The paradox, however, is that in some instances, automated decision-making has served to replicate and amplify bias. With a case study of the algorithmic capture of hiring as heuristic device, this Article provides a taxonomy of problematic features associated with algorithmic decision-making as anti-bias intervention and argues that those features are at odds with the fundamental principle of equal opportunity in employment. To examine these problematic features within the context of algorithmic hiring and to explore potential legal approaches to rectifying them, the Article brings together two streams of legal scholarship: law and technology studies and employment & labor law. Counterintuitively, the Article contends that the framing of algorithmic bias as a technical problem is misguided. Rather, the Article’s central claim is that bias is introduced in the hiring process, in large part, due to an American legal tradition of deference to employers, especially allowing for such nebulous hiring criterion as “cultural fit.” The Article observes the lack of legal frameworks that take into account the emerging technological capabilities of hiring tools which make it difficult to detect disparate impact. The Article thus argues for a re-thinking of legal frameworks that take into account both the liability of employers and those of the makers of algorithmic hiring systems who, as brokers, owe a fiduciary duty of care. Particularly related to Title VII, the Article proposes that in legal reasoning corollary to extant tort doctrines, an employer’s failure to audit and correct its automated hiring platforms for disparate impact could serve as prima facie evidence of discriminatory intent, leading to the development of the doctrine of discrimination per se. The article also considers other approaches separate from employment law such as establishing consumer legal protections for job applicants that would mandate their access to the dossier of information consulted by automated hiring systems in making the employment decision. 
    more » « less
  4. In this position paper, we introduce a new epistemic lens for analyzing algorithmic harm. We argue that the epistemic lens we propose herein has two key contributions to help reframe and address some of the assumptions underlying inquiries into algorithmic fairness. First, we argue that using the framework of epistemic injustice helps to identify the root causes of harms currently framed as instances of representational harm. We suggest that the epistemic lens offers a theoretical foundation for expanding approaches to algorithmic fairness in order to address a wider range of harms not recognized by existing technical or legal definitions. Second, we argue that the epistemic lens helps to identify the epistemic goals of inquiries into algorithmic fairness. There are two distinct contexts within which we examine algorithmic harm: at times, we seek to understand and describe the world as it is, and, at other times, we seek to build a more just future. The epistemic lens can serve to direct our attention to the epistemic frameworks that shape our interpretations of the world as it is and the ways we envision possible futures. Clarity with respect to which epistemic context is relevant in a given inquiry can further help inform choices among the different ways of measuring and addressing algorithmic harms. We introduce this framework with the goal of initiating new research directions bridging philosophical, legal, and technical approaches to understanding and mitigating algorithmic harms. 
    more » « less
  5. null (Ed.)
    A quiet revolution is afoot in the field of law. Technical systems employing algorithms are shaping and displacing professional decision making, and they are disrupting and restructuring relationships between law firms, lawyers, and clients. Decision-support systems marketed to legal professionals to support e-discovery—generally referred to as “technology assisted review” (TAR)—increasingly rely on “predictive coding”: machine-learning techniques to classify and predict which of the voluminous electronic documents subject to litigation should be withheld or produced to the opposing side. These systems and the companies offering them are reshaping relationships between lawyers and clients, introducing new kinds of professionals into legal practice, altering the discovery process, and shaping how lawyers construct knowledge about their cases and professional obligations. In the midst of these shifting relationships—and the ways in which these systems are shaping the construction and presentation of knowledge—lawyers are grappling with their professional obligations, ethical duties, and what it means for the future of legal practice. Through in-depth, semi-structured interviews of experts in the e-discovery technology space—the technology company representatives who develop and sell such systems to law firms and the legal professionals who decide whether and how to use them in practice—we shed light on the organizational structures, professional rules and norms, and technical system properties that are shaping and being reshaped by predictive coding systems. Our findings show that AI-supported decision systems such as these are reconfiguring professional work practices. In particular, they highlight concerns about potential loss of professional agency and skill, limited understanding and thereby both over- and under reliance on decision-support systems, and confusion about responsibility and accountability as new kinds of technical professionals and technologies are brought into legal practice. The introduction of predictive coding systems and the new professional and organizational arrangements they are ushering into legal practice compound general concerns over the opacity of technical systems with specific concerns about encroachments on the construction of expert knowledge, liability frameworks, and the potential (mis)alignment of machine reasoning with professional logic and ethics. Based on our findings, we conclude that predictive coding tools—and likely other algorithmic systems lawyers use to construct knowledge and reason about legal practice— challenge the current model for evaluating whether and how tools are appropriate for legal practice. As tools become both more complex and more consequential, it is unreasonable to rely solely on legal professionals—judges, law firms, and lawyers—to determine which technologies are appropriate for use. The legal professionals we interviewed report relying on the evaluation and judgment of a range of new technical experts within law firms and, increasingly, third-party vendors and their technical experts. This system for choosing technical systems upon which lawyers rely to make professional decisions—e.g., whether documents are responsive, or whether the standard of proportionality has been met—is no longer sufficient. As the tools of medicine are reviewed by appropriate experts before they are put out for consideration and adoption by medical professionals, we argue that the legal profession must develop new processes for determining which algorithmic tools are fit to support lawyers’ decision making. Relatedly, because predictive coding systems are used to produce lawyers’ professional judgment, we argue they must be designed for contestability— providing greater transparency, interaction, and configurability around embedded choices to ensure decisions about how to embed core professional judgments, such as relevance and proportionality, remain salient and demand engagement from lawyers, not just their technical experts. 
    more » « less